U. Klein, K. Rajewsky, and R. Küppers, Peripheral Blood B Cells Expressing the CD27 Cell Surface Antigen Carry Somatically Mutated Variable Region Genes: CD27 as a General Marker for Somatically Mutated (Memory) B Cells, The Journal of Experimental Medicine, vol.154, issue.9, pp.1679-1689, 1998.
DOI : 10.1038/ng0193-88

A. Plebani, D. S. Kumararatne, D. Bonnet, O. Tournilhac, G. Tchernia et al., Human blood IgM " memory " B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire, Blood, vol.104, pp.3647-3654, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00338311

S. Kruetzmann, M. M. Rosado, H. Weber, U. Germing, O. Tournilhac et al., Infections Are Generated in the Spleen, The Journal of Experimental Medicine, vol.1, issue.7, pp.939-945, 2003.
DOI : 10.1016/S0041-1345(97)00043-2

P. Revy, T. Muto, Y. Levy, F. Geissmann, A. Plebani et al., Cell, Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2), pp.565-575, 2000.

D. S. Kumararatne, H. Bazin, and I. C. Maclennan, Marginal zones: the major B cell compartment of rat spleens, European Journal of Immunology, vol.120, issue.11, pp.858-864, 1981.
DOI : 10.1002/eji.1830111103

F. Martin and J. Kearney, MARGINAL-ZONE B CELLS, Nature Reviews Immunology, vol.182, issue.5, pp.323-335, 2002.
DOI : 10.1016/S0167-5699(98)01308-5

S. Aizawa and H. Hirai, Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development, Immunity, vol.18, pp.675-685, 2003.

H. Kurooka, Y. Hamada, S. Toyokuni, and T. Honjo, Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway, Immunity, vol.18, pp.301-312, 2003.

S. Pillai, A. Cariappa, and S. T. Moran, MARGINAL ZONE B CELLS, Annual Review of Immunology, vol.23, issue.1, pp.161-196, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115728

K. Willenbrock, B. Jungnickel, M. Hansmann, and R. Küppers, Human splenic marginal zone B cells lack expression of activation-induced cytidine deaminase (AID), Eur J Immunol, 2005.

M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai et al., Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme, Cell, vol.102, issue.5, pp.553-563, 2000.
DOI : 10.1016/S0092-8674(00)00078-7

R. Carsetti, M. M. Rosado, and H. Wardemann, Peripheral development of B cells in mouse and man, Immunological Reviews, vol.210, issue.1, pp.179-191, 2004.
DOI : 10.1038/416603a

J. Spencer, M. E. Perry, and D. K. Dunn-walters, Human marginal-zone B cells, Immunology Today, vol.19, issue.9, pp.421-426, 1998.
DOI : 10.1016/S0167-5699(98)01308-5

A. H. Lucas and D. C. Reason, Polysaccharide vaccines as probes of antibody repertoires in man, Immunological Reviews, vol.150, issue.1, pp.89-104, 1999.
DOI : 10.1016/0022-2836(87)90412-8

C. Reynaud, C. Garcia, W. R. Hein, and J. Weill, Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process, Cell, vol.80, issue.1, pp.115-125, 1995.
DOI : 10.1016/0092-8674(95)90456-5

T. Honjo, Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc Natl Acad Sci, vol.101, pp.1975-1980, 2004.

P. Mezard, V. Wang, Y. Gao, N. Yin, K. Hoebe et al., Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections, Nature, vol.434, pp.525-529, 2005.

D. Libero, G. Moran, A. P. Gober, H. J. Rossy, E. Shamshiev et al., Bacterial Infections Promote T Cell Recognition of Self-Glycolipids, Immunity, vol.22, issue.6, pp.763-772, 2005.
DOI : 10.1016/j.immuni.2005.04.013