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16.1 Introduction

Biomedical signais are fundamental observations for analyzing the body
function and for diagnosing a wide spectrum of diseases. Information pro
vided by bioelectric signaIs are generally time-varying, nonstationary, some
times transient, and usually corrupted by noise. Fourier transform has been
the unique taol ta face such situations, even if the discrepancy between
theoretical considerations and signal properties has been emphasized for
a long time. These issues can be now nicely addressed by time-scale and
time-frequency analysis.

One of the major areas where new insights can be expected is the cardio
vascular domain. For diagnosis purpose, the noninvasive electrocardiogram
(ECG) is of great value in clinical practice. The ECG is composed of a
set of waveforms resulting from atrial and ventricular depolarization and
repolarization. The first step towards ECG analysis is the inspection of P,
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Figure 16.1
Example of a normal ECG beat.

QRS, and T waveSj each one of these elementary components is a series
of onset, offset, peak, valley, and inflection points (Figure 16.1). Ideally,
the waves exhibit local symmetry properties with respect ta a particular
point (peak and infiection points locations of the considered wave). Based
on these properties, one can extract significant points ta study the wave
shapes and heart rate variability [1].

Wavelet transforms have been applied to ECG signais for enhancing late
potentials [2], reducing noise [3], QRS detection [4], normal and abnormal
beat recognition [51. The methods used in these studies were conducted
through continuous wavelet transform [6], multiresolution analysis [8, 91
and dyadic wavelet transform [10]. In this chapter the continuous wavelet
transform (CWT), based on a complex analyzing function, is applied to
characterize local symmetry of signais, and it is used for ECG arrhythmia
analysis. The first part of this chapter is more theoretical. The behavior of
CWT square modulus of a regular signal f(t) when the scale parameter goes
to zero is studied. For a signal with local symmetry properties, the phase
behavior of its CWT is also examined. These results are then extended,
under sorne conditions, ta signal without local symmetries. The second
part is more experimental and numerical examples on simulated data il
lustrate the mathematical results. Finally, the use of these properties is
considered in automatic ECG recognition and identification by means of
hidden Markov models (BMMs). The presentation emphasizes how a suit,
able pa,rameter vectaf, corresponding ta the input observation sequence of
the Markov chain, can be huilt and applied.
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16.2 Properties of Square Modulus and Phase

With the same notations used in the first chapter of the book, the contin
uous wavelet transform (CWT) of a signal f belonging to L2 (lR) is defined
by:

(W",f)(a, b) = :ra 1:= f(t)'1' C: b) dt

where 'lt is a complex valued function with zero mean and satisfying Cw <
CXJ (see Chapter 1, Equation 1.24).

The wavelet of concern here is complex, compactly supported, hermitian
(i.e., '1'(t) = '1'( -t)), and m times continuously differentiable (m è': 2).
The analyzed signal f(t) is real and supposed to be two times continuously
differentiable.

16.2.1 Square Modulus Approximation

The square modulus of CWT of f is defined by

1(W",f) (a, b)1 2 = (W",f)(a, b)(W",f)(a,b),

and its derivative according to the space variable bis:

âl(W",f) (a,b)1
2

= â(W",f) (a,b) (W f)( b)
& & '" a,

â(W",f) (a, b) (W f) ( b)
+ âb '" a,

One can show that Equation 16.1 is equivalent to (see Appendix 1):

(16.1)

â 1(W",f)(a, b)1
2

= ~ Re ( r= f(t). '1' (t -b) dt. (16.2)
âb a J~= a
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where Re(.) is the real part of its argument. At fine scales, the above
derivative may be approximated by (see Appendix 2):

(16.3)

with

1
+00

mi = -00 xi. 'l1(x) dx i EN

According ta this approximation, at fine-seale analysis, connections can be
made between local extrema of 1 (W",f) (a,bJ!2 (as a function of the space
variable) on one hand and infiection points and local extrema of f on the
other hand. Local maxima (minima) of 1 (W",f) (a, bJ!2 are always infiection
points (local extrema) of f, but local minima may be also infiection points
of f. These properties are summarized in Table 16.1.

16.2.2 Phase Behavior

Based on the CWT modulus, one cannat, in general, recover the decom
posed signal. The phase information 18 necessary ta reconstruct the signal.
In their pioneering work on the complex Hardy wavelet, Grassmann et al.
[6-b] have indicated that phase information reveals isolated singularities (or
local bursts) in a signal more accurately than does the modulus. In this
section, the local behavior of the phase of CWT of signais with particular
points as local extrema or inflection points 18 studied. We first consider
the case of functions exhibiting local symmetry properties around these
points, and then we extend the previous results to the case of an m times
continuously differentiable function (m ::> 2).

Let f (t) be a continuous function satisfying the following property:

(3bo E w,) (3è > 0) (\:Ilhl < é) f(bo + h) = f(bo ~ h) (16.4)

which means that f is locally symmetric with respect ta the vertical axis
crossing in bo. (Note that if locally f has no oscillations, bo is a local
extremum.)

For fine scale, (W",f)(a,bo) becomes (see Appendix 3, Case (1)):

[+00
(W",f) (a, bol = 2va' Jo f(at + bo)' Re('l1(t)) dt. (16.5)

Hence, when the scale parameter "a" goes ta zero, (W",f) (a, bol is real,
and its phase is then 0 or 11", according ta the sign of (16.5). If f has local
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Table 16.1
Summary of the properties of the CWT vs. local symmetry of the
analyzed signal.

If f(b) presents in bo a ... ... then in bo I(W"f)(a, b)1 2 is ...

1. Maximum 1\ Minimum V
br; <bo<bt bo

2. Minimum V Minimum V
bo bo

f
bo

3. Infiection Maximum 1\bo

~
bo

4. Inflection Maximum /\bo

5. Inflection \ Minimum V
bo

6. Inflection ~ Minimum V
bo

Note: For those regular shapes, local maxima of 1(W>Ir f) (a, b) 1
2 point

out the time locations of sharp transitions and correspond ta two kinds
of infl.ection points: (3) fl/(bû)> 0, J"(ba) = 0, f"(bt) < 0; j'(ba) > 0
(4) f"(bû)< 0, f"(bo) ~ 0, f"(bci) > 0; f'(bo) > 0
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symmetry property in bo, then the phase of (W",f) (a, bol is equai to 0 or
11:.

Suppose now that f, instead of obeying (16.4), has the following property:

(3bo E Ill:) (30 > 0) (\llhl < E) f(bo + h) = 2f(bo) - f(bo - h) (16.6)

which indicates that f is anti-symmetric around f(bo) (if f is not locally
oscillating, bo ls a local extremum of j').

The assumption (16.6) implies the following equality at fine scales (see
Appendix 3, Case (2)):

r=(W"f) (a,bo) = - 2iva Jo f(at+bo)Im('lJ(t))dt (16.7)

which means that the CWT of f in bo is imaginary, with constant phase
equal to ±11: /2 according to the sign of (16.7). This property underlines that:
if f has a local center of symmetry in bo then the phase of (W",f) (a, bol is
equal to 11:/2 or -11:/2.

The observed signal may not comply with symmetry assumptions but,
even so, we still want to use the CWT tools to locate peak and inflection
points. Let us now suppose that f is an m times continuously differentiable
function (m ?: 2); then, at fine resolution, (W"f)(a, bol can be approxi
mated by:

m n

(W",f)(a, bol "" va· L;- m n f(n1(bo)
n=l n.

(16.8)

where f(n) denotes the nth derivative of f. Using the Fourier Transform of
>Ji to express m n , (16.8) becomes

(16.9)

Hence, at high resolution (Le., small value of "a" or high frequency) CWT in
bo is a linear combination of the analyzed signal derivatives. The variations
of (W"f) (a, bol across scales express the behavior of the derivatives of the
signal according to the choice of the wavelet (consequently, ail the moments
m n are fixed). For example, if the first moment of >Ji is null, asymptotically
f'(bo) does not influence the evolution of CWT in bo across scales. By
limiting the approximation ta the second order, we get:

(W"f)(a,bo) "" -vfa3. j'(bo)Im(m,). i - v:: J"(bo)Re(m2) = ai + (3
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where a and (3 are real. It is then possible ta associate particular values
of the phase ta local extrema and infiection points. For example, if a local
extremum is reached in bo (J'(bo) = 0), the phase is equal to 0 or ",
depending on the sign of (3 and, in the same way, a local infiection in bo
(J"(bo) = 0) is associated with phase value -"/2 or ,,/2, according to the
sign of a.

16.3 Illustration on Signais

In this section, numerical examples on synthetic data and real ECG sig
nais are given to illustrate the above mathematical properties. The analyz
ing wavelet of concern is defined by (Figure 16.2):

"'(t) = g(t) . e2idfot (16.10)

where

g(t) = { C· (1 + cos 2"fot~
1

for Itl -<: 2fo

elsewhere
(16.11)

The required admissibility conditions are satisfied for k integer other than
-1, 0, 1, and has been set to 2. fo represents the normalized frequency
(0 < fo < 1/2). For this wavelet, Im(mil is positive and Re(m2) is negative.

16.3.1 Results on Simulated Data

In the following examples, fo = 0.005, the scale parameters are

fo
ai = with ~ = 0.005, 0 -<: i -<: 10.

fo + i· ~

Example 1

See Figure 16.3. The input signal (Figure 16.3a) behaves like

with A, = 15, b, = 1700, m, = 250; A 2 = 0.3, b2 = 2500, m2 = 625. The
associated CWT square modulus is reported (Figure 16.3b); the frequency
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incre""es (scale decre""es) from the bottom ta the top. We have reported
on the "Y" axis the parameter i in place of the Beale ai.

The local extremal values of the square modulus make it possible ta
locate bath the infiection points and the local extrema of the signal. This
is clearly established Figure 16.1c, which shows the contour plot of the
square modulus. Figure 16.1d depicts the phase variations between ±7r. As
the phase is unstable when the modulus is close ta zero, its value is lixed
ta zero when the modulus is less than a given threshold. Aligning the °
and 7f crossing of the phase from low ta high frequency, one can localize the
extrema of the signal, while ±7f/2 are associated ta infiection points. 0

Example 2
See Figure 16.4. Deline fo(t) by:

where m, = 250, m2 = 300, c = 2500. The signal used in this example is:
f(t) = Arfo(t) + A2f6(-(t + t o)) with A, = 10000, A 2 = 225 and to = 10.
The symmetry properties do not hold in this case. However, infiection
points and local extrema of the signal still can be localized using phase and
modulus. According ta the sign of (3, the jump in the phase from -7f ta
+7r corresponds ta a local maximum in the signal and zero crossing ta a
local minimum. As (}: > 0, infl.ection point on an increasing positive slope,
corresponds ta -7f /2 and on a decreasing negative slope ta +7f /2. 0

Example 3
See Figure 16.5. The analyzed signal is the distribution

U(t) = g ift>to
elsewhere.

The associated CWT may be written as:

/

+00
(W"U)(a,b) =,ra \[J(v) dv

(tQ-b)
(16.12)

Denote \[J, the function which is nul! except on the support of \[J and such
that its derivative is equal ta \[J. Then the square modulus of Equation
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16.12 is equal to

447

This quantity reaches its maximal value for b = ta, and q;(0) is imaginary
with phase equal to -1r/2 which means that CWT point out the time
location of the jump in U(t).

In practice, digital signal processing deals with input data obtained by
analog law-pass filtering and a uniform sampling of a continuous time pro
cess. A signallike U(t) is then smoothed (due to filtering) and becomes
continuous at ta with a sharp transition (or maximal slope) at this point
before the sampling procedure. WT of this sampled data behaves as for an
infiection point on a positive increasing slope. 0

16.3.2 Results on Real Data

The signal of concern is a normal ECG sampled at 360 Hz; fa is set to
0.001 and the scale parameters are

fa
ai = with t. = 0.002, 0 <: i <: 25.

fa + i . t.

Example 4
See Figure 16.6. From the CWT square modulus, the QRS and T waves

are welliocalized because of their high siope, while P waves are llot clearly
separated from the QRS. In this example, the CWT has been multiplied
by ~ 1 before phase calculus in order ta change the zero crossing into Jr

crossing. Because the phase is represented between ±7r, the 7T crossing
point corresponds ta a discontinuity in the gray level representation (jump
from black ta white color). Using the phase representation, one can localize
ail the elementary components of the ECG when aligning the jump in the
phase acrosa seaies. It can be seen that the phase locates the characteristic
components of the signal more accuratelYi the modulus enhances the waves
that have high slope (Le., sharp waves), mainly the QRS and T waves, but
does not allow the localization of P waves because of their low amplitude.
To overcome this drawback, we proposed a nonlinear transformation (NLT)
[111 to get transients with an inflection point corresponding locally to a
potential wave peak and to enhance the energy of the P and T waves
with respect to the QRS one (Figure 16.7). Local maxima of the signal is
analyzed by means of CWT to exploit its inherent ability to point out the
time location of such transients. 0
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Example 5

See Figures 16.8 and 16.9. The CWT is applied to the output of NLT. The
wavelet transform has been multiplled by the complex i to transform a 11"/2
crossing in a color jump. P, QRS, and T waves can be clearly separated
with the help of the CWT square modulus; the phase map led to the same
results. Moreover, each curve of constant phase 1r/2 varies according to
the "propagation" across scales of the infiection point associated with a
particular event in the signal. The energy distribution in the time-scale
shows a similar behavior. 0

These remarks have been exploited from the pattern recognition point of
view. The so-called "fingerprints" are here defined as the curves obtained
by connecting, in the timescale domain, the points of a given constant phase
value. In Example 4 (resp. 5), the fingerprints associated with the phase
value zero (resp. 11"/2)-jump from black to white color~varyaccording to
the shape of the corresponding events (P, QRS, and T waves). Based on
these remarks, a set of descriptors has been extracted from the timescale
plane to characterize the elementary components of the ECG and to aUow
its recognition based on hidden Markov models.

16.4 Cardiac Beat Recognition Approach Based on
Wavelet Transforrn and HMMs

BasicaUy, hidden Markov models are doubly stochastic processes that can
characterize any discrete sequence of feature vectors {Oth<t<Tl derived
from an input signal f(t) and considered as reallzations of the so-caUed
"observable process" {O,}I<t<T, by a set of multidimensional probability
density functions (pdfs) whose parameters depend upon an unobservable
first-order Markov state automaton or chain {X,h"'''T, the so caUed "hid
den process". PracticaUy, the hidden chain {Xth"'''T models through its
topology and its transition probabilities, the temporal and structural as
pects of f(t) while the state-dependent observation pdfs account for the
probabilistic nature of the feature vectors from which they are derived.
For bath reasons, hidden Markov modellng is weU suited to the analysis of
structured random signaIs that are essentially segmental in nature. After
designing several competing models of arrhythmias, beat classification and
labeling, and/or complex rhythms, analysis can be performed based on dy
namic programming techniques and the maximum likelihood criterion. The
modeling techniques described here consider the observed ECG signal f(t)
as being equivalent to a sequence of events associated with state changes.
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Figure 16.2
The plot of the real part, imaginary part, and square modulus of
the wavelet used.
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CWT of simulated data with local symmetry properties.
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CWT of real ECG.
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Example of the NLT procedure applied to the ECG.
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Figure 16.9
Close-up view of the second ECG beat of the Figure 16.8.
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Figure 16.10
Block diagram of the data preparation procedure.

457

In practiee, a preprocessing stage first projects the observed ECG signal
f(t) into a discrete sequence of feature vectors {O,}j<:'<:T' Then, the likeli
hood of {Oth"'<:T is simultaneously assessed by several competing models:
their respective states describe the different signal patterns that can Dccur
in the rhythmie disorder associated with, and their topology depicts the
statistical arrangement existing between them along the time axis. The
objective here is ta show how the wavelet transform, based on the suitable
properties described previously, could be used in the ECG data prepara
tion step (more precisely in the construction of the observation vector 0,).
Markov theory is not reported here; the reader may refer ta [121.

The data preparation is depicted in Figure 16.10 and relies on the extrac
tion of shape parameters from CWT performed on the output of the NLT
of the ECG. As seen before, for each elementary wave, the NLT generates
transients with an infiection point corresponding locally ta its dominant
extremum. The ability of the CWT ta focus on the edges of a signal is here
of great interest. The combination NLT/WT allow8 euhancement of the
separation between the elementary waves iu the scalogram (Figure 16.9).
Moreover, each fingerprint characterizes, by its length, the persistency of
an event across the Beaies and, by its concavity, its -relative time position
in the signal.

For each 7r/2 crossing of the phase at the finest scale of decomposition
and time position t, the associated fingerprint is reconstructed by an ad
hoc procedure under a simple constraint of continuity; then an observation
vector {Ot} i8 derived. It is composed of five parameters:

• "Length": the length of the fingerprint in terms of number of assa
ciated levels of decomposition;

• "Concavity": its concavity;

• "seale {max)": the seale value, over the support of the fingerprlnt 1

where the CWT square modulus is maximum;
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Figure 16.11
a) ECG signal, h) the corresponding NLT, c) fingerprints on the
time-scale domain, d) the reconstructed fingerprints.

• the magnitude of the above maximum "max";

• the summation of ali the CWT modulus on the fingerprint,
"E(smod)" .

16.5 Results

In our experiments, the phase is computed over a finite Beaie set in order
ta derive relevant fingerprintsj at each 1r /2 crossing, the NLT is then de
composed on several levels ta recover correctly the theoretical bandwidth
of elementary waves. The transition probabilities of the models are set
equal ta consider as equiprobable the presence or the absence of inter
wave observations. The five parameters composing the observation vectors
Dt are assumed ta be independent. Moreover, "length", "concavity," and
"scale (max)" are discrete random variables while "max" and ":E(smod)"
are Gaussian. The wave couplet durations are modeled by truncated Gaus
sians sa that they are lower and upper bounded. Ali the parameters of the
probability laws are initialized with a clustering of a small observations set
and then refined cyclicaliy using a modified version of the Baum-Welch's
reestimation procedure [131.

Figure 16.11 depicts an ECG signal with its corresponding NLT, the fin
gerprints before and alter reconstruction (represented on 15 levels). Thus,
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Figure 16.12
Two examples of the structure of the Markov state chain used
ta decode the corresponding observation sequence derived from
signal by data preparation stage. Vertical lines locate the ele
mentary waves recognized by the structure.

for each time candidate an observation vector is derived from f(t). Finally,
the resulting observation serie is processed by the hidden chain depicted
in Figure 16.12. A transition between "T" and "P" states via the "T/Pll
one is allowed ta process successive cardiac beats. "8" and "E" states
model the onset and the end of the signal. Note that ail ECG constitutive
waves are weIl localized and identified even when HF noise, mainly due
to the electromyography activity, is present. In our ECG recognition pro
cess, the strong nonstationarity of the signal is shaped essentially because
each wave is vi€wed as a unique stationary entity, rather than a locally sta
tionary stochastic process. Although our approach is still under test, the
tirst results obtained show that the recognition rate is enhanced compared
ta the procedure where segmentation and identification of ECG waves are
performed simultaneously by classical HMMs.
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16.6 Conclusion

We have presented sorne properties of a complex wavelet transform. The
modulus maxima and the ±11"/2 phase crossing point out the locations of
sharp signal transitions, while modulus minima correspond to the llflat"
segments of the signal. The results on simulated data show that phase in
formation may he of great interest when time location of particular events
of such peaks is looked for. On ECG signal, the behavior of both phase
and modulus of the decomposition when the scale goes to zero allows de
scription of the elementary components (P, QRS, T). By exploiting these
properties, the Markov models, briefly presented here, can behave as a seg
mentation/recognition signal processing tool, achieving the numbering of aU
the waves (including the P ones), by probabilistically modeling the temporal
structure of the observed surface ECG. The set of standard mathematical
tools devoted to the use of HMMs constitutes a found theoretical basis. It
must be emphasized that there is no restriction on the use of Markovian
models when the physical phenomenon is only approximately Markovian.
It must be said, however, that the segmentation of the observed signais may
not be sufficient ta identify sorne pathological situations, for instance, when
the waves, say P and QRS, usually appearing on different time intervals,
are superimposed, as in the auricular-ventricular dissociation.

16.7 Appendix

Appendix 1: Expression of CWT Square Modulus
Derivative

The derivative of (W",f) (a,b) according to the space variable bis:

a(W",f) (a, b) = _1 j+= I(t) . a'li (~) dt
ab ,fa _= ab

= -1 j+= I(t). 'li' (t - b) dt .
.,;0:; _= a
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As \II is a compactly supported wavelet, using partial integration, the above
quantity becomes:

a (W",f) (a,b) = _1 /+00 f'(t). 'lt (t -b) dt
ab va -00 a

The Equation 16.1 is equivalent to

al(w",f) (a,b)1
2

= 2R (a(W",j)(a,b)(W j)( b)).
ab e ab '" a, ,

the expression of
a(W",j)(a,b)

ab

in this equality leads to Equation 16.2.

Appendix 2: Approximation of CWT Square Modulus
Derivative

The quantity

/

+00 (t b)
-00 U(t)· 'lt -a- dt

is equal ta

/

+00
a -00 U(ax + b) . 'lt(x) dx.

Note that the last Integral holds only on the support of 'lt. Assuming that
U is differentiable, the above quantity can be approximated by:

/

+00 /+00
a -00 (U(b) +axU'(b))· 'lt(x)dx = a2 U'(b) -00 x· 'lt(x)dx

('lt Is zero mean) for smal! values of a (fine-scale analysis and then l1igh
frequencies). Assume now that f' is differentiable, one can then use this
last approximation for each term in the right-hand part of Equation 16.2:

/
+00 (t b) /+00

-00 f'(t)· 'lt : dt'" a
2
f"(b) -00 x· 'lt(x)dx;
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which permits obtaining Equation 16.3.

Appendix 3: Expression of (Wq;f) (a, bol

L Case of: (~bo E m:) (~ê > 0) (\tjhl < ê) f(bo + h) = f(bo - h)
Using a change variable we obtain:

1
+00

(W",f) (a,bo) = va· -00 f(at+bo)iJ!(t)dt

roo

= va· Jo (f(at +bol + f( -at + bol) . Re (iJ!(t)) dt.

As iJ! is hermitian and compactly supported, its definition domain
has the form (-tl/2, tl/2). Hence, for ail values a such that atl/2 <
e we have f(at +bo) = f( -at+bo)· Based on this remark and using
a simple variable change one can obtain the Equation 16.5.

2. Case of: (~bo E m:) (~ê > 0) (\tlhl < e) f(bo+h) = 2f(bo) - f(bo - h) .
The same approach is adopted: for atl/2 < é we use the above rela
tion and the zero mean property of the wavelet to obtain Equation
16.6.
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