M. J. Schlesinger, M. Ashburner, and A. Tissieres, Heat Shock Proteins: From Bacteria to Man

H. J. Yost and S. Lindquist, RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis, Cell, vol.45, issue.2, pp.185-193, 1986.
DOI : 10.1016/0092-8674(86)90382-X

U. Bond, Stressed out! Effects of environmental stress on mRNA metabolism, FEMS Yeast Research, vol.6, issue.2, pp.160-170, 2006.
DOI : 10.1111/j.1567-1364.2006.00032.x

A. J. Matlin, F. Clark, and C. W. Smith, Understanding alternative splicing: towards a cellular code, Nature Reviews Molecular Cell Biology, vol.270, issue.5, pp.386-398, 2005.
DOI : 10.1038/ng1469

M. Dundr and T. Misteli, Functional architecture in the cell nucleus, Biochemical Journal, vol.356, issue.2, pp.297-310, 2001.
DOI : 10.1042/bj3560297

A. I. Lamond and D. L. Spector, Nuclear speckles: a model for nuclear organelles, Nature Reviews Molecular Cell Biology, vol.4, issue.8, pp.605-612, 2003.
DOI : 10.1038/nrm1172

T. Misteli, Concepts in nuclear architecture, BioEssays, vol.113, issue.5, pp.477-487, 2005.
DOI : 10.1002/bies.20226

D. L. Spector, X. D. Fu, and T. Maniatis, Associations between distinct pre-mRNA splicing components and the cell nucleus, EMBO J, vol.10, pp.3467-3481, 1991.

P. J. Mintz, S. D. Patterson, A. F. Neuwald, C. S. Spahr, and D. L. Spector, Purification and biochemical characterization of interchromatin granule clusters, The EMBO Journal, vol.18, issue.15, pp.4308-4320, 1999.
DOI : 10.1093/emboj/18.15.4308

J. Engelsman, E. J. Bennink, L. Doerwald, C. Onnekink, L. Wunderink et al., Mimicking phosphorylation of the small heat-shock protein ??B-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles, European Journal of Biochemistry, vol.106, issue.21, pp.4195-4203, 2004.
DOI : 10.1111/j.1432-1033.2004.04359.x

S. C. Lakhotia, P. Ray, T. K. Rajendra, and K. V. Prasanth, The noncoding transcripts of hsr-omega gene in Drosophila: Do they regulate trafficking and availability of nuclear RNA processing factors?, Curr. Sci, vol.77, pp.553-563, 1999.

K. V. Prasanth, T. K. Rajendra, A. K. Lal, and S. C. Lakhotia, Omega speckles?A novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila, 2000.

G. Jagatheesan, S. Thanumalayan, B. Muralikrishna, N. Rangaraj, A. A. Karande et al., Colocalization of intranuclear lamin foci with RNA splicing factors, J. Cell Sci, vol.112, pp.4651-4661, 1999.

A. S. Adhikari, K. Sridhar-rao, N. Rangaraj, V. K. Parnaik, and C. M. Rao, Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for ??B-crystallin and Hsp25, Experimental Cell Research, vol.299, issue.2, pp.393-403, 2004.
DOI : 10.1016/j.yexcr.2004.05.032

M. Carmo-fonseca, R. Pepperkok, M. T. Carvalho, and A. I. Lamond, Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies, The Journal of Cell Biology, vol.117, issue.1, pp.1-14, 1992.
DOI : 10.1083/jcb.117.1.1

K. E. Handwerger, Z. Wu, C. Murphy, and J. G. Gall, Heat shock induces mini-Cajal bodies in the Xenopus germinal vesicle, J. Cell Sci, vol.115, pp.2011-2020, 2002.

A. H. Fox, Y. Wahlam, A. K. Leung, C. E. Lyon, J. Andersen et al., Paraspeckles, Current Biology, vol.12, issue.1, pp.13-25, 2004.
DOI : 10.1016/S0960-9822(01)00632-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890200

R. Gattoni, D. Mahe, P. Mahl, N. Fischer, M. Mattei et al., The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping, Nucleic Acids Research, vol.24, issue.13, pp.2535-2542, 1996.
DOI : 10.1093/nar/24.13.2535

C. Jolly and R. I. Morimoto, Stress and the cell nucleus: Dynamics of gene expression and structural reorganization, Gene Expr, vol.7, pp.261-270, 1999.

K. D. Sarge, S. P. Murphy, and R. I. Morimoto, Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress., Molecular and Cellular Biology, vol.13, issue.3, pp.1392-1407, 1993.
DOI : 10.1128/MCB.13.3.1392

C. Jolly, Y. Usson, and R. I. Morimoto, Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules, Proc. Natl Acad. Sci. USA, pp.6769-6774, 1999.
DOI : 10.1073/pnas.96.12.6769

C. Jolly, A. Metz, J. Govin, M. Vigneron, B. M. Turner et al., Stress-induced transcription of satellite III repeats, The Journal of Cell Biology, vol.5, issue.1, pp.25-33, 2004.
DOI : 10.1002/bies.10274

URL : https://hal.archives-ouvertes.fr/inserm-00333362

M. Denegri, I. Chiodi, M. Corioni, F. Cobianchi, S. Riva et al., Stress-induced Nuclear Bodies Are Sites of Accumulation of Pre-mRNA Processing Factors, Molecular Biology of the Cell, vol.12, issue.11, pp.3502-3514, 2001.
DOI : 10.1091/mbc.12.11.3502

P. Anderson and N. Kedersha, RNA granules: Figure 1., The Journal of Cell Biology, vol.128, issue.6, pp.803-808, 2006.
DOI : 10.1261/rna.2142405

W. J. Kim, S. H. Back, V. Kim, I. Ryu, and S. K. Jang, Sequestration of TRAF2 into Stress Granules Interrupts Tumor Necrosis Factor Signaling under Stress Conditions, Molecular and Cellular Biology, vol.25, issue.6, pp.2450-2462, 2005.
DOI : 10.1128/MCB.25.6.2450-2462.2005

K. D. Scharf, H. Heider, I. Hohfled, R. Lyck, E. Schmidt et al., The Tomato Hsf System: HsfA2 Needs Interaction with HsfA1 for Efficient Nuclear Import and May Be Localized in Cytoplasmic Heat Stress Granules, Molecular and Cellular Biology, vol.18, issue.4, pp.2240-2251, 1998.
DOI : 10.1128/MCB.18.4.2240

M. G. Thomas, L. J. Martinez-tosar, M. Loschi, J. M. Pasquini, J. Correale et al., Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes, Molecular Biology of the Cell, vol.16, issue.1, pp.405-420, 2005.
DOI : 10.1091/mbc.E04-06-0516

E. Meshorer, C. Erb, R. Gazit, L. Pavlovsky, D. Kaufer et al., Alternative Splicing and Neuritic mRNA Translocation Under Long-Term Neuronal Hypersensitivity, Science, vol.295, issue.5554, pp.508-512, 2002.
DOI : 10.1126/science.1066752

E. Meshorer, B. Bryk, D. Toiber, J. Cohen, E. Podoly et al., SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA, Molecular Psychiatry, vol.8, issue.11, pp.985-997, 2005.
DOI : 10.1677/jme.0.0250169

S. C. Lakhotia, The non coding developmentally active and stress inducible hsrw gene of Drosophila melanogaster integrates post-transcriptional processing of other nuclear transcripts, Noncoding RNAS: Molecular Biology and Molecular Medicine, pp.202-219, 2003.

J. C. Garbe, W. G. Bendena, M. Alfano, and M. L. Pardue, A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure, J. Biol. Chem, vol.261, pp.16889-16894, 1986.

M. E. Fini, W. G. Bendena, and M. L. Pardue, Unusual behavior of the cytoplasmic transcript of hsr omega: an abundant, stress-inducible RNA that is translated but yields no detectable protein product, The Journal of Cell Biology, vol.108, issue.6, pp.2045-2057, 1989.
DOI : 10.1083/jcb.108.6.2045

S. C. Lakhotia and A. K. Singh, Conservation of the 93D puff of Drosophila melanogaster in different species of Drosophila, Chromosoma, vol.39, issue.2, pp.265-278, 1982.
DOI : 10.1007/BF00288681

R. P. Ryseck, U. Walldorf, and B. Hovemann, Two major RNA products are transcribed from heat-shock locus 93D ofDrosophila melanogaster, Chromosoma, vol.3, issue.1, pp.17-20, 1985.
DOI : 10.1007/BF01259440

W. G. Bendena, A. Ayme-southgate, J. C. Garbe, and M. L. Pardue, Expression of heat-shock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster, Developmental Biology, vol.144, issue.1, pp.65-77, 1991.
DOI : 10.1016/0012-1606(91)90479-M

M. Mutsuddi and S. C. Lakhotia, Spatial expression of thehsr-omega (93D) gene in different tissues ofdrosophila melanogaster and identification of promoter elements controlling its developmental expression, Developmental Genetics, vol.16, issue.4, pp.303-311, 1995.
DOI : 10.1002/dvg.1020170403

S. C. Lakhotia, T. Rajendra, and K. V. Prasanth, Developmental regulation and complex organization of the promoter of the non-codinghsr?? gene ofDrosophila melanogaster, Journal of Biosciences, vol.77, issue.1, pp.25-38, 2001.
DOI : 10.1007/BF02708978

S. C. Lakhotia and M. Mutsuddi, Heat shock but not benzamide and colchicine response elements are present within the -844 bp upstream region of the hsrw gene of Drosophila melanogaster, 1996.

S. C. Lakhotia and M. Tapadia, Genetic mapping of the amide response element(s) of the hsr ?? locus of Drosophila melanogaster, Chromosoma, vol.107, issue.2, pp.127-135, 1998.
DOI : 10.1007/s004120050288

B. T. Hovemann, I. Reim, S. Werner, S. Katz, and H. Saumweber, The protein Hrb57A of Drosophila melanogaster closely related to hnRNP K from vertebrates is present at sites active in transcription and coprecipitates with four RNA-binding proteins, Gene, vol.245, issue.1, pp.127-137, 2000.
DOI : 10.1016/S0378-1119(00)00027-5

B. T. Hovemann, E. Dessen, H. Mechler, and E. Mack, snRNP associated protein P11 which specifically binds to heat shock puff 93D reveals strong homology with hnRNP core protein A1, Nucleic Acids Research, vol.19, issue.18, pp.4909-4914, 1991.
DOI : 10.1093/nar/19.18.4909

P. Buchenau, H. Saumweber, and D. J. Arndt-jovin, Embryo Development and Heat Shock. Flexibility of Transcription Sites In Vivo, The Journal of Cell Biology, vol.107, issue.2, pp.291-303, 1997.
DOI : 10.1007/BF00710032

K. Zu, M. L. Sikes, S. R. Haynes, and A. L. Beyer, Altered levels of the Drosophila HRB87F/hrp36 hnRNP protein have limited effects on alternative splicing in vivo., Molecular Biology of the Cell, vol.7, issue.7, pp.1059-1073, 1996.
DOI : 10.1091/mbc.7.7.1059

G. Zimowska and M. R. Paddy, Structures and Dynamics of Drosophila Tpr Inconsistent with a Static, Filamentous Structure, Experimental Cell Research, vol.276, issue.2, pp.223-232, 2002.
DOI : 10.1006/excr.2002.5525

M. E. Samuels, D. Bopp, R. A. Colvin, R. F. Roscigno, M. A. Garcia-blanco et al., RNA binding by Sxl proteins in vitro and in vivo., Molecular and Cellular Biology, vol.14, issue.7, pp.4975-4990, 1994.
DOI : 10.1128/MCB.14.7.4975

A. Dangli and E. K. Bautz, Differential distribution of nonhistone proteins from polytene chromosomes of Drosophila melanogaster after heat shock, Chromosoma, vol.125, issue.3, pp.201-207, 1983.
DOI : 10.1007/BF00285621

G. Morcillo, J. L. Diez, M. E. Carbajal, and R. M. Tanguay, HSP90 associates with specific heat shock puffs (hsr?) in polytene chromosomes of Drosophila and Chironomus, Chromosoma, vol.353, issue.9, pp.648-659, 1993.
DOI : 10.1007/BF00352313

W. G. Bendena, J. C. Garbe, K. L. Traverse, S. C. Lakhotia, and M. L. Pardue, Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): inducer-specific patterns of the three transcripts, The Journal of Cell Biology, vol.108, issue.6, pp.2017-2028, 1989.
DOI : 10.1083/jcb.108.6.2017

T. K. Rajendra, K. V. Prasanth, and S. C. Lakhotia, Male sterility associated with overexpression of the noncodinghsr?? gene in cyst cells of testis ofDrosophila melanogaster, Journal of Genetics, vol.112, issue.2, pp.97-110, 2001.
DOI : 10.1007/BF02728335

N. Rizzi, M. Denegri, I. Chiodi, M. Corioni, R. Valgardsdottir et al., Transcriptional Activation of a Constitutive Heterochromatic Domain of the Human Genome in Response to Heat Shock, Molecular Biology of the Cell, vol.15, issue.2, pp.543-551, 2004.
DOI : 10.1091/mbc.E03-07-0487

T. Fukagawa, M. Nogami, M. Yoshikawa, M. Ikeno, T. Okazaki et al., Dicer is essential for formation of the heterochromatin structure in vertebrate cells, Nature Cell Biology, vol.14, issue.8, pp.784-791, 2004.
DOI : 10.1093/emboj/18.15.4196

R. Valgardsdottir, I. Chiodi, M. Giordano, F. Cobianchi, S. Riva et al., Structural and Functional Characterization of Noncoding Repetitive RNAs Transcribed in Stressed Human Cells, Molecular Biology of the Cell, vol.16, issue.6, pp.2597-2604, 2005.
DOI : 10.1091/mbc.E04-12-1078

G. Biamonti, Opinion: Nuclear stress bodies: a heterochromatin affair?, Nature Reviews Molecular Cell Biology, vol.14, issue.6, pp.493-498, 2004.
DOI : 10.1038/ng1252

A. Metz, J. Soret, C. Vourc-'h, J. Tazi, and C. Jolly, A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules, Journal of Cell Science, vol.117, issue.19, pp.4551-4558, 2004.
DOI : 10.1242/jcs.01329

URL : https://hal.archives-ouvertes.fr/inserm-00333359

I. Chiodi, M. Corioni, M. Giordano, R. Valgardsdottir, C. Ghigna et al., RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies, Nucleic Acids Research, vol.32, issue.14, pp.4127-4136, 2004.
DOI : 10.1093/nar/gkh759

E. Heard, Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome, Current Opinion in Genetics & Development, vol.15, issue.5, pp.482-489, 2005.
DOI : 10.1016/j.gde.2005.08.009

N. Gilbert, S. Boyle, H. Fiegler, K. Woodfine, N. P. Carter et al., Chromatin Architecture of the Human Genome, Cell, vol.118, issue.5, pp.555-566, 2004.
DOI : 10.1016/j.cell.2004.08.011

R. A. Martienssen, Maintenance of heterochromatin by RNA interference of tandem repeats, Nature Genetics, vol.35, issue.3, pp.213-214, 2003.
DOI : 10.1038/ng1252

J. F. Caceres, S. Stamm, D. M. Helfman, and A. R. Krainer, Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors, Science, vol.265, issue.5179, pp.1706-1709, 1994.
DOI : 10.1126/science.8085156

T. Misteli, Different site, different splice, Nature Cell Biology, vol.2, issue.6, pp.98-100, 2000.
DOI : 10.1038/35014091

W. Van-der-houven-van-oordt, K. Newton, G. R. Screaton, and J. F. Caceres, Role of SR protein modular domains in alternative splicing specificity in vivo, Nucleic Acids Research, vol.28, issue.24, pp.4822-4831, 2000.
DOI : 10.1093/nar/28.24.4822

F. Weighardt, F. Cobianchi, L. Cartegni, I. Chiodi, A. Villa et al., A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock, J. Cell Sci, vol.112, pp.1465-1476, 1999.

T. Misteli, RNA splicing: What has phosphorylation got to do with it?, Current Biology, vol.9, issue.6, pp.198-200, 1999.
DOI : 10.1016/S0960-9822(99)80128-6

C. F. Bourgeois, F. Lejeune, and J. Stevenin, Broad Specificity of SR (Serine???Arginine) Proteins in the Regulation of Alternative Splicing of Pre-Messenger RNA, Prog. Nucleic Acid Res. Mol. Biol, vol.78, pp.37-88, 2004.
DOI : 10.1016/S0079-6603(04)78002-2

A. V. Philips, L. T. Timchenko, and T. A. Cooper, Disruption of Splicing Regulated by a CUG-Binding Protein in Myotonic Dystrophy, Science, vol.280, issue.5364, pp.737-741, 1998.
DOI : 10.1126/science.280.5364.737

X. Lu, N. A. Timchenko, and L. T. Timchenko, Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy, Human Molecular Genetics, vol.8, issue.1, pp.53-60, 1999.
DOI : 10.1093/hmg/8.1.53

A. Mankodi, P. Teng-umnuay, M. Krym, D. Henderson, M. Swanson et al., Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2, Annals of Neurology, vol.28, issue.6, pp.760-768, 2003.
DOI : 10.1002/ana.10763

Q. Q. Tang and M. D. Lane, Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis, Proc. Natl Acad. Sci. USA, pp.12446-12450, 1999.
DOI : 10.1073/pnas.220425597

Q. Q. Tang and M. D. Lane, Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation, Genes & Development, vol.13, issue.17, pp.2231-2241, 2000.
DOI : 10.1101/gad.13.17.2231

J. W. Raff, R. Kellum, and B. Alberts, The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle, EMBO J, vol.13, pp.597-5983, 1994.

B. Hovemann, U. Walldorf, and R. P. Ryseck, Heat-shock locus 93D of Drosophila melanogaster: An RNA with limited coding capacity accumulates precursor transcripts after heat shock, MGG Molecular & General Genetics, vol.317, issue.2, pp.334-340, 1986.
DOI : 10.1007/BF00425519

A. J. Fornace, . Jr, and J. B. Mitchell, Induction of B2 RNA polymerase III transcription by heat shock: enrichment for heat shock induced sequences in rodent cells by hybridization subtraction, Nucleic Acids Research, vol.14, issue.14, pp.5793-5811, 1986.
DOI : 10.1093/nar/14.14.5793

W. M. Liu, W. M. Chu, P. V. Choudary, and C. W. Schmid, Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts, Nucleic Acids Research, vol.23, issue.10, pp.1758-1765, 1995.
DOI : 10.1093/nar/23.10.1758

T. H. Li, J. Spearow, C. M. Rubin, and C. W. Schmid, Physiological stresses increase mouse short interspersed element (SINE) RNA expression in vivo, Gene, vol.239, issue.2, pp.367-372, 1999.
DOI : 10.1016/S0378-1119(99)00384-4

R. H. Kimura, P. V. Choudary, and C. W. Schmid, Silkworm Bm1 SINE RNA increases following cellular insults, Nucleic Acids Res, vol.27, pp.3381-3387, 1999.
DOI : 10.1093/nar/27.16.3380

URL : http://doi.org/10.1093/nar/27.16.3380

R. H. Kimura, P. V. Choudary, K. K. Stone, and C. W. Schmid, Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes, Cell Stress & Chaperones, vol.8, issue.3, pp.263-272, 2001.
DOI : 10.1379/1466-1268(2001)006<0263:SIOBRI>2.0.CO;2

T. A. Allen, V. Kaenel, S. Goodrich, J. A. Kugel, and J. F. , The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock, Nature Structural & Molecular Biology, vol.267, issue.9, pp.816-821, 2004.
DOI : 10.1016/0076-6879(83)01039-3

C. A. Espinoza, T. A. Allen, A. R. Hieb, J. F. Kugel, and J. A. Goodrich, B2 RNA binds directly to RNA polymerase II to repress transcript synthesis, Nature Structural & Molecular Biology, vol.267, issue.9, pp.822-829, 2004.
DOI : 10.1016/0076-6879(83)01039-3

R. K. Moyzis, K. L. Albright, M. F. Bartholdi, L. S. Cram, L. L. Deaven et al., Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis, Chromosoma, vol.174, issue.6, pp.375-386, 1987.
DOI : 10.1007/BF00333988

J. J. Bonner and R. L. Kerby, RNA polymerase II transcribes all of the heat shock induced genes of Drosophila melanogaster, Chromosoma, vol.77, issue.1, pp.93-108, 1982.
DOI : 10.1007/BF00344596

J. T. Westwood, J. Clos, and C. Wu, Stress-induced oligomerization and chromosomal relocalization of heat-shock factor, Nature, vol.353, issue.6347, pp.822-827, 1991.
DOI : 10.1038/353822a0

T. P. Alastalo, M. Hellesuo, A. Sandqvist, V. Hietakangas, M. Kallio et al., Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70, Journal of Cell Science, vol.116, issue.17, 2003.
DOI : 10.1242/jcs.00671

Y. Zhang, W. Frejtag, R. Dai, and N. F. Mivechi, Heat shock factor-4 (HSF-4a) is a repressor of HSF-1 mediated transcription, Journal of Cellular Biochemistry, vol.3, issue.4, 2001.
DOI : 10.1002/jcb.1191

S. T. Smith, S. Petruk, Y. Sedkov, E. Cho, S. Tillib et al., Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex, Nature Cell Biology, vol.19, issue.2, pp.162-167, 2004.
DOI : 10.1038/35020506

S. Hirabayashi, H. Ohno, J. Iida, and Y. Hata, C2PA is a nuclear protein implicated in the heat shock response, Journal of Cellular Biochemistry, vol.393, issue.1, pp.65-74, 2002.
DOI : 10.1002/jcb.10279

H. Xing, C. N. Mayhew, K. E. Cullen, O. K. Park-sarge, and K. D. Sarge, HSF1 Modulation of Hsp70 mRNA Polyadenylation via Interaction with Symplekin, Journal of Biological Chemistry, vol.279, issue.11, pp.10551-10555, 2004.
DOI : 10.1074/jbc.M311719200