H. Braak and E. Braak, Evolution of the neuropathology of Alzheimer's disease, Acta Neurologica Scandinavica, vol.16, issue.Suppl 1, pp.3-12, 1996.
DOI : 10.1111/j.1600-0404.1996.tb05866.x

J. Ashburner, J. G. Csernansky, C. Davatzikos, N. C. Fox, G. B. Frisoni et al., Computer-assisted imaging to assess brain structure in healthy and diseased brains, The Lancet Neurology, vol.2, issue.2, pp.79-88, 2003.
DOI : 10.1016/S1474-4422(03)00304-1

O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow et al., Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study, The Lancet Neurology, vol.5, issue.3, pp.228-234, 2006.
DOI : 10.1016/S1474-4422(06)70355-6

B. Dubois, H. H. Feldman, C. Jacova, S. T. Dekosky, P. Barberger-gateau et al., Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS???ADRDA criteria, The Lancet Neurology, vol.6, issue.8, pp.734-780, 2007.
DOI : 10.1016/S1474-4422(07)70178-3

P. A. Freeborough and N. C. Fox, MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.475-479, 1998.
DOI : 10.1109/42.712137

G. B. Frisoni, C. Testa, A. Zorzan, F. Sabattoli, A. Beltramello et al., Detection of grey matter loss in mild Alzheimer's disease with voxel based morphometry, Journal of Neurology, Neurosurgery & Psychiatry, vol.73, issue.6, pp.657-664, 2002.
DOI : 10.1136/jnnp.73.6.657

M. Doddrell and A. W. Toga, Mapping hippocampal and ventricular change in alzheimer disease, NeuroImage, vol.22, pp.1754-1766, 2004.

G. B. Frisoni, F. Sabattoli, A. D. Lee, R. A. Dutton, A. W. Toga et al., In vivo neuropathology of the hippocampal formation in AD: A radial mapping MR-based study, NeuroImage, vol.32, issue.1, 2006.
DOI : 10.1016/j.neuroimage.2006.03.015

J. G. Csernansky, L. Wang, S. Joshi, J. P. Miller, M. Gado et al., Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus, Neurology, vol.55, issue.11, pp.1636-1643, 2000.
DOI : 10.1212/WNL.55.11.1636

P. M. Thompson, K. M. Hayashi, G. De-zubicaray, A. L. Janke, S. E. Rose et al., Dynamics of gray matter loss in Alzheimer's disease, J. Neurosci, vol.23, pp.994-1005, 2003.

D. Chan, J. C. Janssen, J. L. Whitwell, H. C. Watt, R. Jenkins et al., Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study, The Lancet, vol.362, issue.9390, pp.1121-1122, 2003.
DOI : 10.1016/S0140-6736(03)14469-8

J. P. Lerch, J. C. Pruessner, A. Zijdenbos, H. Hampel, S. J. Teipel et al., Focal Decline of Cortical Thickness in Alzheimer's Disease Identified by Computational Neuroanatomy, Cerebral Cortex, vol.15, issue.7, pp.995-1001, 2005.
DOI : 10.1093/cercor/bhh200

C. Pennanen, M. Kivipelto, S. Tuomainen, P. Hartikainen, T. Hanninen et al., Hippocampus and entorhinal cortex in mild cognitive impairment and early AD, Neurobiology of Aging, vol.25, issue.3, pp.303-310, 2004.
DOI : 10.1016/S0197-4580(03)00084-8

S. J. Teipel, J. C. Pruessner, F. Faltraco, C. Born, M. Rocha-unold et al., Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI, Journal of Neurology, vol.58, issue.6, pp.794-800, 2006.
DOI : 10.1007/s00415-006-0120-4

J. C. Pruessner, L. M. Li, W. Serles, M. Pruessner, D. L. Collins et al., Volumetry of Hippocampus and Amygdala with High-resolution MRI and Three-dimensional Analysis Software: Minimizing the Discrepancies between Laboratories, Cerebral Cortex, vol.10, issue.4, pp.433-442, 2000.
DOI : 10.1093/cercor/10.4.433

J. C. Pruessner, S. Kohler, J. Crane, M. Pruessner, C. Lord et al., Volumetry of Temporopolar, Perirhinal, Entorhinal and Parahippocampal Cortex from High-resolution MR Images: Considering the Variability of the Collateral Sulcus, Cerebral Cortex, vol.12, issue.12, pp.1342-1353, 2002.
DOI : 10.1093/cercor/12.12.1342

S. Duchesne, N. Bernasconi, A. Bernasconi, and D. L. Collins, MR-based neurological disease classification methodology: Application to lateralization of seizure focus in temporal lobe epilepsy, NeuroImage, vol.29, issue.2, pp.557-566, 2006.
DOI : 10.1016/j.neuroimage.2005.07.052

C. C. Lopez and . Meltzer, Discriminative MR image feature analysis for automatic schizophrenia and alzheimer aäôs disease classification, " presented at the Med, Image Comput. Comput. Assist. Intervention Conf, 2004.

Z. Lao, D. Shen, Z. Xue, B. Karacali, S. M. Resnick et al., Morphological classification of brains via high-dimensional shape transformations and machine learning methods, NeuroImage, vol.21, issue.1, pp.46-57, 2004.
DOI : 10.1016/j.neuroimage.2003.09.027

L. G. Apostolova, R. A. Dutton, I. D. Dinov, K. M. Hayashi, A. W. Toga et al., Conversion of Mild Cognitive Impairment to Alzheimer Disease Predicted by Hippocampal Atrophy Maps, Archives of Neurology, vol.63, issue.5, pp.693-699, 2006.
DOI : 10.1001/archneur.63.5.693

P. Golland, W. E. Grimson, M. E. Shenton, and R. Kikinis, Detection and analysis of statistical differences in anatomical shape, Medical Image Analysis, vol.9, issue.1, pp.69-86, 2005.
DOI : 10.1016/j.media.2004.07.003

J. M. Fitzpatrick and M. Sonka, Handbook of medical imaging, volume 2. medical image processing and analysis, Int. Soc. Optical Eng, 2000.

P. Tofts, Quantitative MRI of the Brain: Measuring Changes Caused by Disease, 2003.
DOI : 10.1002/0470869526

G. M. Preboske, J. L. Gunter, C. P. Ward, and C. R. Jack-jr, Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI, NeuroImage, vol.30, issue.4, pp.1196-1202, 2006.
DOI : 10.1016/j.neuroimage.2005.10.049

A. D. Leow, A. D. Klunder, C. R. Jack-jr, A. W. Toga, A. M. Dale et al., Longitudinal stability of MRI for mapping brain change using tensor-based morphometry, NeuroImage, vol.31, issue.2, pp.627-640, 2006.
DOI : 10.1016/j.neuroimage.2005.12.013

S. Duchesne and K. Sousa, Predicting MCI progression to AD via automated analysis of T1 weighted MR image intensity Alzheimer's Dementia, 2005.

A. M. Brickman, C. Habeck, E. Zarahn, J. Flynn, and Y. Stern, Structural MRI covariance patterns associated with normal aging and neuropsychological functioning, Neurobiology of Aging, vol.28, issue.2, pp.284-295, 2007.
DOI : 10.1016/j.neurobiolaging.2005.12.016

Y. Fan and N. Batmanghelich, Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline, NeuroImage, vol.39, issue.4, pp.1731-1743, 2008.
DOI : 10.1016/j.neuroimage.2007.10.031

A. Shiino, T. Watanabe, K. Maeda, E. Kotani, I. Akiguchi et al., Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease, NeuroImage, vol.33, issue.1, pp.17-26, 2006.
DOI : 10.1016/j.neuroimage.2006.06.010

S. Duchesne, J. Pruessner, S. Teipel, H. Hampel, and D. L. Collins, Successful AD and MCI differentiation from normal aging via automated analysis of MR image features, Alzheimer's & Dementia, vol.1, issue.1, p.43, 2005.
DOI : 10.1016/j.jalz.2005.06.182

J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, J. Lancaster et al., A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development, NeuroImage, vol.2, issue.2, pp.89-101, 1984.
DOI : 10.1006/nimg.1995.1012

D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.463-468, 1998.
DOI : 10.1109/42.712135

J. G. Sled, A. P. Zijdenbos, and A. C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, issue.1, pp.87-97, 1998.
DOI : 10.1109/42.668698

D. L. Collins and A. C. Evans, Animal, Int. J. Pattern Recognit. Artif. Intell, vol.11, pp.1271-1294, 1997.
DOI : 10.1016/B978-012692535-7/50084-7

A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens et al., Automated multi-modality image registration based on information theory, Information Processing in Medical Imaging, 1995.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, Multimodality image registration by maximization of mutual information, IEEE Transactions on Medical Imaging, vol.16, issue.2, pp.187-198, 1997.
DOI : 10.1109/42.563664

M. K. Chung, K. J. Worsley, T. Paus, C. Cherif, D. L. Collins et al., A Unified Statistical Approach to Deformation-Based Morphometry, NeuroImage, vol.14, issue.3, pp.595-606, 2001.
DOI : 10.1006/nimg.2001.0862

T. F. Cootes, G. J. Edwards, and C. J. Taylor, Active appearance models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.6, pp.681-685, 2001.
DOI : 10.1109/34.927467

S. Duchesne, J. Pruessner, and D. L. Collins, Appearance-Based Segmentation of Medial Temporal Lobe Structures, NeuroImage, vol.17, issue.2, pp.515-531, 2002.
DOI : 10.1006/nimg.2002.1188

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, 2001.

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

G. C. Cawley and N. L. Talbot, Fast exact leave-one-out cross-validation of sparse least-squares support vector machines, Neural Networks, vol.17, issue.10, pp.1467-1475, 2004.
DOI : 10.1016/j.neunet.2004.07.002

M. Weiner, M. Albert, C. Decarli, S. De-kosky, M. De-leon et al., The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: A consensus report Alzheimer's Assoc, 2005.

M. F. Folstein, S. E. Folstein, and P. R. Mchugh, ???Mini-mental state???, Journal of Psychiatric Research, vol.12, issue.3, pp.189-198, 1975.
DOI : 10.1016/0022-3956(75)90026-6

L. O. Wahlund, P. Julin, S. E. Johansson, and P. Scheltens, Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study, Journal of Neurology, Neurosurgery & Psychiatry, vol.69, issue.5, pp.630-635, 2000.
DOI : 10.1136/jnnp.69.5.630

N. S. Schoonenboom, W. M. Van-der-flier, M. A. Blankenstein, F. H. Bouwman, G. J. Van-kamp et al., CSF and MRI markers independently contribute to the diagnosis of Alzheimer's disease, Neurobiology of Aging, vol.29, issue.5, 2007.
DOI : 10.1016/j.neurobiolaging.2006.11.018

W. E. Klunk, H. Engler, A. Nordberg, Y. Wang, G. Blomqvist et al., Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B, Annals of Neurology, vol.107, issue.suppl 1, pp.306-319, 2004.
DOI : 10.1002/ana.20009

A. Nordberg, PET imaging of amyloid in Alzheimer's disease, The Lancet Neurology, vol.3, issue.9, p.519, 2004.
DOI : 10.1016/S1474-4422(04)00853-1

F. J. Bonte, M. F. Weiner, E. H. Bigio, and C. L. White, SPECT imaging in dementias, J. Nucl. Med, vol.3, issue.42, pp.1131-1133, 2001.

S. C. Johnson, A. J. Saykin, L. C. Baxter, L. A. Flashman, R. B. Santulli et al., The Relationship between fMRI Activation and Cerebral Atrophy: Comparison of Normal Aging and Alzheimer Disease, NeuroImage, vol.11, issue.3, pp.179-187, 2000.
DOI : 10.1006/nimg.1999.0530

K. Kantarci, C. R. Jack-jr, Y. C. Xu, N. G. Campeau, P. C. O-'brien et al., Regional metabolic patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS study, Neurology, vol.55, issue.2, pp.210-217, 2000.
DOI : 10.1212/WNL.55.2.210

R. Stahl, O. Dietrich, S. Teipel, H. Hampel, M. F. Reiser et al., Diffusion tensor imaging zur Erfassung axonaler Degeneration bei Morbus Alzheimer, Der Radiologe, vol.43, issue.7, pp.566-575, 2003.
DOI : 10.1007/s00117-003-0925-4

N. J. Kabani, J. G. Sled, and H. Chertkow, Magnetization Transfer Ratio in Mild Cognitive Impairment and Dementia of Alzheimer's Type, NeuroImage, vol.15, issue.3, pp.604-610, 2002.
DOI : 10.1006/nimg.2001.0992

G. B. Frisoni, R. Rossi, and A. Beltramello, The Radial Width of the Temporal Horn in Mild Cognitive Impairment, Journal of Neuroimaging, vol.11, issue.1, pp.351-354, 2002.
DOI : 10.1111/j.1552-6569.2002.tb00143.x

L. O. Wahlund and K. Blennow, Cerebrospinal fluid biomarkers for disease stage and intensity in cognitively impaired patients, Neuroscience Letters, vol.339, issue.2, pp.99-102, 2003.
DOI : 10.1016/S0304-3940(02)01483-0

E. Duchesnay, A. Cachia, A. Roche, D. Riviere, Y. Cointepas et al., Classification Based on Cortical Folding Patterns, IEEE Transactions on Medical Imaging, vol.26, issue.4, pp.553-565, 1999.
DOI : 10.1109/TMI.2007.892501

C. Davatzikos, A. Genc, D. Xu, and S. M. Resnick, Voxel-Based Morphometry Using the RAVENS Maps: Methods and Validation Using Simulated Longitudinal Atrophy, NeuroImage, vol.14, issue.6, pp.1361-1369, 2001.
DOI : 10.1006/nimg.2001.0937

C. A. Cocosco, A. P. Zijdenbos, and A. C. Evans, A fully automatic and robust brain MRI tissue classification method, Medical Image Analysis, vol.7, issue.4, pp.513-527, 2003.
DOI : 10.1016/S1361-8415(03)00037-9

R. K. Kwan, A. C. Evans, and G. B. Pike, MRI simulation-based evaluation of image-processing and classification methods, IEEE Transactions on Medical Imaging, vol.18, issue.11, pp.1085-1097, 1999.
DOI : 10.1109/42.816072

J. P. Thirion and G. Calmon, Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences, IEEE Transactions on Medical Imaging, vol.18, issue.5, pp.429-441, 1999.
DOI : 10.1109/42.774170

URL : https://hal.archives-ouvertes.fr/inria-00615095