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Abstract

A joint model based on a latent class approach is proposed to explore the associ-

ation between correlated longitudinal quantitative markers and a time-to-event. A

longitudinal latent class model describes latent profiles of evolution of the latent pro-

cess underlying the correlated markers. The latent process is linked to the markers

by nonlinear transformations including parameters to be estimated. A proportional

hazard model describes the joint risk of event according to the latent classes and

two specifications of the risk function are considered: a parametric function and a

semi-parametric function based on splines. Depending on the chosen risk function,

estimation is performed by a maximum likelihood or a maximum penalized likeli-

hood approach. A simulation study validates the estimation procedure. As a latent

class model relies on the strong assumption that the markers and the time-to-event

are independent conditionally on the latent classes, a test of conditional indepen-

dence is proposed using the residuals conditional on time-to-event. The procedure
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does not require any posterior classification and can be conducted using standard

statistical softwares. The methodology is applied to describe profiles of cognitive

decline in the elderly and their associated risk of dementia.

Key words: Cognitive aging; conditional independence; joint analysis; latent class

model; mixed model; multiple outcomes.

1 Introduction

When collecting longitudinal markers of a chronic disease and time to a clini-

cal event, the joint modelling of the two quantities represents the best way to

study their association. A joint model for longitudinal markers and a time-to-

event consists in describing the marker evolution using a model for longitudinal

data as the linear mixed model (Laird and Ware (1982)) and the risk of event

using a survival model. Based on this principle, two kinds of joint models were

proposed: the shared random effect model (Henderson et al. (2000)) and the

latent class model (Lin et al. (2000)). A shared random effect model consists in

including the random effects of the mixed model as covariates in the model for

the event. Thus, it offers a flexible way to model the correlation between the

marker evolution and the risk of event. However, the estimation procedure can

be numerically intensive since a numerical integration is needed in the compu-

tation of the joint log-likelihood. Second, the shared random effects make the

interpretation of the dependency difficult in terms of correlation between the

two quantities. Finally the mixed model used to model the marker evolution

is assumed homogeneous with a Gaussian distribution for the random-effects
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whereas one could assume that the marker evolution is heterogeneous accord-

ing to the event occurrence. To avoid these limitations, a second way to jointly

model the longitudinal marker and the time-to-event is the latent class model.

Based on the assumption that the population is constituted of several latent

sub-populations in which the evolution of the marker and the risk of the event

are different, this approach makes direct use of the heterogeneous nature of

the data. It offers an intuitive way of describing the dependency between the

marker and the event by distinguishing profiles of marker evolution associated

with the risk of event. Another interesting property is that the correlation be-

tween the repeated measures of the markers and the link between the markers

and the time-to-event are modelled separately using quantitative random-

effects for the former and latent classes for the latter. At last, in contrast with

the shared random-effect model, as the association between the marker and

the event is managed by a discrete latent variable, the joint log-likelihood does

not involve any numerical integration on the shared parameters. In spite of

these assets, the latent class approach has only been proposed in few studies

for jointly studying a marker evolution and an event. Muthén and Shedden

(1999) explored the association between the shape of heavy drinking trajec-

tory in the 18-30-year age range and the probability of alcohol dependency

at age 30 while Lin et al. (2000) and Lin et al. (2002) developed latent class

models for investigating the association between the evolution of the PSA, a

biomarker of the Prostate Cancer, and the incidence of a Prostate cancer.

When studying the evolution of a chronic disease, an additional problem is

that several markers of the same underlying quantity are frequently collected.

For example, when studying the profiles of cognitive ageing in the elderly,

cognition is not directly observed but is measured by several non Gaussian

markers, the psychometric tests. Roy and Lin (2000) proposed a mixed model
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with a latent process to account for the multiplicity of the markers by describ-

ing their common factor evolution but they restricted their work to Gaussian

markers and linear dependencies between markers and latent process. Proust

et al. (2006) introduced flexible nonlinear links between the markers and the

latent process in the previous model to account for possibly non Gaussian

continuous markers. Based on this nonlinear model for multivariate longitu-

dinal data, Proust-Lima et al. (2007) developed a joint latent class model for

multivariate longitudinal outcomes and an event by including a logistic model

for the risk of event in order to propose a diagnostic tool of dementia based on

repeated measures of several psychometric tests. However, by using a logistic

regression for the event, the estimates of the joint model and the diagnostic

tool could be biased as they were obtained on a selected sample of subjects

with the event status known at a given time.

In this context, the aim of this paper is to propose a joint latent class model

for investigating the association between the common factor of several longitu-

dinal markers and a time-to-event using a proportional hazard model. We pro-

pose two estimation procedures, a parametric maximum likelihood approach

and a semi-parametric maximum penalized likelihood approach. A central hy-

pothesis of the latent class approach is the conditional independence between

the markers evolution and the risk of event given the latent classes. In the

literature, it was evaluated using methods based on the Bandeen-Roche et al.

(1997) strategy of posterior individual affectation to the latent classes (Lin

et al. (2002) ; Lin et al. (2004)). We propose an alternative approach us-

ing conditional residuals inspired by Dobson and Henderson (2003) that does

not require any posterior classification. Next section presents the latent class

model specification. Estimation procedures based on the log-likelihood or the

penalized log-likelihood are detailed in section three. Section four describes a
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simulation study which validated the estimation process. We focus in section

five on the test of conditional independence. This work being mainly moti-

vated by the study of cognitive ageing and occurrence of dementia, section six

is dedicated to an application on data from the prospective cohort of aging

PAQUID (Letenneur et al. (1994)). Finally we conclude in section seven.

2 Statistical model

2.1 Heterogeneous population

We consider a population of N subjects that can be divided in G unobserved

sub-populations represented by latent classes. For each subject i, i = 1, ..., N,

the latent class membership is managed by a latent variable ci that equals g if

i belongs to class g (g = 1, ..., G). The individual probability of belonging to

class g is explained using covariates X1i in a multinomial logistic regression:

πig = P (ci = g|X1i) =
eξ0g+XT

1i
ξ1g

∑G
l=1 eξ0l+XT

1i
ξ1l

, (2.1)

where ξ0g is the intercept for class g and ξ1g is the q1-vector of class-specific

parameters associated with the q1-vector of time-independent covariates Xi1.

For identifiability, ξ01 = 0 and ξ11 = 0. Latent class g is then characterized by

a specific evolution of the markers and a specific risk of event.

2.2 Markers evolution

In each latent class, the markers evolution follows the latent process model for

multivariate longitudinal data proposed by Proust et al. (2006). Each longi-
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tudinal marker is assumed to be a specific transformation of a noisy measure

of the same latent process which is defined in continuous time (Λi(t))t≥0 and

represents their common factor. The latent process evolution is described by

a linear mixed model (Laird and Ware (1982)) specific to each class g:

Λi(t) |ci=g= Z(t)T uig + X2i(t)
T β , t ≥ 0, (2.2)

where Z(t) is the q-vector of time-dependent covariates associated with the q-

vector of random-effects uig; Z(t) can typically include a polynomial function

of time. The vector of random-effects uig is normally distributed according

to N
(

µg, ω
2
gB

)

where ω1 = 1 and B is an unstructured q × q-matrix. Thus,

the mean vector and the variance of the random-effects may be different for

each latent class. The q2−vector of covariates X2i(t) is associated with the

q2-vector of fixed effects β assumed common across the classes to simplify

notations. However, a class-specific vector of regression coefficients could also

be considered without additional difficulty.

For each subject i (i = 1, ..., N), and each marker k (k = 1, ..., K), nik repeated

measures of the marker are collected. At each occasion j (j = 1, ..., nik), the

measure of the marker yijk at time tijk is linked to the latent process value

Λi(tijk) through a flexible nonlinear measurement model:

ỹijk = hk(yijk; ηk) = Λi(tijk) + αik + εijk, (2.3)

where hk is a Beta cumulative density function with parameters ηk = (η1k, η2k):

hk(y; ηk) =

∫ y
0 xη1k−1(1 − x)η2k−1dx
∫ 1
0 uη1k−1(1 − u)η2k−1

du. (2.4)
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The Beta transformations are chosen because they are parsimonious and of-

fer very flexible shapes (Proust et al. (2006)). These transformations required

a preliminary rescaling of the markers in [0, 1]. The subject-and-marker spe-

cific random intercept αik is defined according to the Gaussian distribution

N (0, σ2
αk

) and the independent errors εijk are defined according to the Gaus-

sian distribution N (0, σ2
εk

). The subject-and-marker specific random intercept

represents the inter-individual variability of the ability to perform each test

among individuals with the same latent cognitive level.

2.3 Survival model

Let define (Ti, Di) where Ti is the minimum between T ∗
i the time of event and

Ci the time of censoring. The indicator of event Di equals 1 if T ∗
i ≤ Ci and 0

if Ci < T ∗
i . The risk of event in latent class g is described by a proportional

hazard model:

λ(t | ci = g, X3i; ζg, δg) = λ0g(t; ζg)e
X3iδg , (2.5)

where X3i is the q3-vector of covariates associated with the q3-vector of pa-

rameters δg which can be specific to the latent classes, and λ0g(t; ζg) is the

baseline risk of event in latent class g parameterized by ζg. A simplified

model may also be used assuming proportionality of the risks between classes,

λ0g(t) = λ0(t)e
δ0g .

We considered two specifications of the baseline risk function: a parametric

model using for instance a Weibull or a piecewise constant baseline hazard, or

a semi-parametric model through a splines basis survival model. Splines are

piecewise polynomial functions that are linearly combined to define a func-
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tion on an interval. For the semi-parametric survival model, we used cubic

M-splines and their integrated version, I-splines (Ramsay (1988) ; Joly et al.

(1999)). Thus, in latent class g, for a sequence of m knots, baseline risk func-

tion λ0g(.) was defined by a linear combination of m + 2 cubic M-splines, and

survival function S0g(.) was defined according to m + 2 I-splines:

λ0g(.) =
m+2
∑

l=1

ζlgMl and S0g(.) = e−
∑m+2

l=1
ζlgIl where ζlg ≥ 0. (2.6)

where ζg is the vector of splines coefficients to estimate.

3 Estimation

3.1 Parametric log-likelihood

Let note θ the entire vector of parameters. Parameters estimation is achieved

by a maximum likelihood method for a known number of latent classes G.

Using the conditional independence assumption between the markers evolution

and the risk of event given the latent classes, the individual contribution of

subject i to the likelihood is:

Li(θ) =
G

∑

g=1

P (ci = g; θ)f(yi | ci = g; θ)λ(Ti | ci = g; θ)DiS(Ti | ci = g; θ),

(3.1)

where P (ci = g; θ) = πig is defined in (2.1) according to the multinomial logis-

tic regression and yi = (yi11, ..., yijk, ..., yiniKK)T . The density of the longitudi-

nal markers in latent class g, f(yi | ci = g; θ) is the product of the multivariate

normal density φg(ỹi; θ) of the transformed variable ỹi and the Jacobian of the
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nonlinear transformations of the markers J(yi; θ) (Proust et al. (2006)):

f(yi | cig = 1; θ) = f(ỹi | cig=1; θ)J(yi; θ)

= φg(ỹi; θ)J(yi; θ).
(3.2)

Indeed, for each latent class g, the transformed variable vector ỹi follows a mul-

tivariate normal distribution with mean vector Eig = (ET
i1g, ..., E

T
ikg, ..., E

T
iKg)

T

and variance-covariance matrix Vig defined as follow:

Eikg = Zk
i µg + Xk

2iβ (3.3)

and Vig =





























Z1
i

...

ZK
i





























ω2
gB





Z1T
i . . . ZKT

i



 +





























Σ1 0 0

0
. . . 0

0 0 ΣK





























, (3.4)

where Σk = σ2
αk

1nik
1T

nik
+σ2

εk
Inik

; Zk
i = (Z(ti1k), ..., Z(tinikk))

T is the nik×(p+

1)-matrix of time polynomials for subject i and test k; Xk
2i = (X2i(ti1k), ..., X2i(tinikk))

T

is the nik×q2-matrix of time-dependent covariates with a common effect across

classes. In and 1n are respectively the identity matrix of size n and the n-vector

of 1s. From these results, the log-likelihood L(θ) of the joint model is:

L(θ) =
N

∑

i=1

ln





G
∑

g=1

πigφg(ỹi; θ)λg(Ti)
DiSi(Ti)



 −
N

∑

i=1

ln (J(yi; θ)) . (3.5)

Maximum likelihood estimates of the joint latent class model are obtained

from that expression using an algorithm of maximization detailed in section

3.4. When necessary, some parameters were reparameterized to control for

constraints. For the Beta transformations, the mean and variance parameters

were preferred to the standard parameters.
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Estimates are obtained for a given number of latent classes. In practice several

models are estimated with different numbers of classes, and the best model

is selected with the Bayes Information Criterion (BIC) (Schwartz (1978)). In-

deed, several studies in standard mixture models emphasized that the BIC

gave satisfactory results when determining the number of components com-

pared to other criteria or tests (Hawkins et al. (2001);Miloslavsky and van der

Laan (2003);Bauer and Curran (2003)).

3.2 Penalized likelihood for the semi-parametric survival model

When estimating the risk function using splines, a penalized likelihood can be

used in order to limit local variations of the estimated function. The penalized

log-likelihood is the sum of the log-likelihood given in (3.5) and a penalty which

increases as the function to estimate has increasing local variations. We chose

a penalty by the L2 norm of the second derivative of the risk function. The

penalized log-likelihood was:

Lp(θ; κ) = L(θ) − κ

∫

t
λ

′′

0(u; θ)2du, (3.6)

where κ is the smoothing parameter which controls the trade-off between

smoothness of the baseline function and fit of the data. The log-likelihood

L(θ) has the same expression as in (3.5) except that baseline risk and survival

functions are defined according to equations given in (2.6).

In order to decrease the number of parameters when using a semi-parametric

survival model, we assumed a proportional hazard across latent classes. As a

result, we only had one smoothing parameter to estimate. Methods for esti-

mating κ were proposed (O’Sullivan (1988) ; Joly et al. (1999)) but they were
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numerically too intensive with this model so κ was chosen heuristically.

3.3 Left-truncated data

When subjects are included in a cohort only if they have not experimented the

event before their entry at T0i, data are left-truncated. In that case, param-

eters have to be estimated by the maximization of the conditional likelihood

obtained by dividing individual contribution to the likelihood Li by the prob-

ability of being free of event at entry:

Ltr
i (θ) =

Li(θ)

S(T0i; θ)
, (3.7)

where S(T0i; θ) is the marginal survival function across the classes defined as

follows:

S(T0i; θ) =
G

∑

g=1

P (ci = g)f(Ti ≥ T0i | ci = g; θ) =
G

∑

g=1

πigSg(T0i; θ). (3.8)

3.4 Algorithm

Whatever the model, we used a modified Marquardt optimization algorithm

(Marquardt (1963)), a Newton-Raphson-like algorithm (Fletcher (2000)) to

obtain the maximum likelihood estimators. In this algorithm, the vector of

parameters θ is updated until convergence using:

θ(l+1) = θ(l) − δH̃
(

θ(l−1)
)−1

U
(

θ(l)
)

, (3.9)
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where U
(

θ(l)
)

and H
(

θ(l)
)

are respectively the gradient and the Hessian ma-

trix at iteration l, the first and second derivatives being computed by finite

differences. The matrix H̃ is a diagonal-inflated Hessian to ensure positive-

definiteness. The step δ equals 1 by default but can be modified to ensure that

the log-likelihood is improved at each iteration, and convergence is reached

when the stopping criterion based on the second derivatives U(θ(l))′H
(

θ(l)
)−1

U(θ(l)) ≤

10−5. After convergence, standard-error estimates of the parameter estimates

are directly obtained using the inverse of the Hessian.

3.5 Posterior probabilities of latent classes and classification

From the maximum likelihood estimates θ̂, posterior probabilities of belonging

to each latent class g given the repeated measures of the markers yi, the

covariates xi and the survival data (Ti, Di) can be computed:

π̂
y,T
ig = P (ci = g | yi, Ti, Di, xi; θ̂)

=
P (ci = g | xi; θ̂)f(yi, Ti, Di | ci = g, xi; θ̂)

∑G
l=1 P (ci = l | xi; θ̂)f(yi, Ti, Di | ci = l, xi; θ̂)

.
(3.10)

A posterior classification is derived from these posterior probabilities, each

subject being classified in the class in which he has the highest probability

to belong. This classification may be used to evaluate goodness-of-fit of the

model while posterior probabilities conditional only on the marker measures

P (ci = g | yi, xi; θ̂) may also be computed and used to propose diagnostic or

prognostic tools for the event.
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4 Simulation study

We conducted a simulation study to investigate the quality of the maximum

likelihood estimators in the parametric model using a Weibull hazard function.

We considered the following model for three longitudinal markers and 2 latent

classes:

Λi(t) |ci=g = (µ0g + u0i) + (µ1g + u1i) × t,

with ui =

















u0i

u1i

















∼ N

































0

0

















,

















σ2
0 = 0.0095 σ01 = −0.0013

σ01 = −0.0013 σ2
1 = 0.00074

































and µ01 = 0.644, µ02 = 0.0.613, µ11 = −0.062, µ12 = −0.124.

λ(t) |ci=g = ζ2
1gζ

2
2g(ζ

2
1gt)

ζ2
2g−1,

with ζ11 = 0.102, ζ21 = 4.719, ζ12 = 0.109, ζ22 = 4.432.

hk(Yijk; (η1k, η2k)) = Λi(tijk) + εijk, εijk ∼iid N (0, σ2(k)
ε ), k ∈ {1, 2, 3}

with η11 = 1.000, η21 = 0.719, η12 = 0.989, η22 = 0.645, η13 = 0.428,

η23 = 0.767, σ(1)
ε = 0.048, σ(2)

ε = 0.051, and σ(3)
ε = 0.040.

Parameter values were chosen to mimic the application. Five hundred samples

of 500 subjects were simulated. For each subject, we first simulated the class

membership variable ci according to a Bernouilli distribution with probability

π1 = 0.75, entry time in the cohort T0i according to a uniform distribution on

[65, 75], time of event T ∗
i according to the Weibull function in the latent class

of subject i, and time of censoring Ci according to a uniform distribution on

[T0i, 95]. Then, we defined times of measurement for each marker: ti1k = T0i

and tijk = min(ti(j−1)k + 3; Ti) while ti(j−1)k < Ti. The number and times

of measurement were the same for the two markers of a same subject but
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differed among subjects. Finally we simulated random-effects (uig)g=1,...,G, test-

specific intercepts (αik)k=1,...,3 and Gaussian errors (εijk)(j=1,nik;k=1,...,3) in order

to compute the vector of transformed variables ỹi that we transformed in the

markers scales using the inverse of the nonlinear functions (hk(.; ηk)
−1)k=1,...,3.

Among the 500 replications, subjects had in mean 5.55 repeated measures

in the first class and 4.53 in the second class with a higher risk of event.

The mean time at entry in the study was 70.01 in the two classes, and the

mean time at censoring or event was 82.14 in the first class and 79.06 in the

second class. Finally 9.3% had the event in the first class versus 49.9% in the

second class. The overall proportion of events was a little higher than in the

application dataset (19.5% versus 14.9%). This was due to the simulation of

left truncation and right censoring that slightly differed. The true parameter

values were used as initial values to shorten the computational time but similar

results were found on the first runs when using perturbated initial values. The

algorithm did not converge for only 1 over the 500 replicates. Table 1 gives

the results showing that the estimators are fairly good in terms of mean, bias

and coverage rate. We note that the same conclusions arised when considering

samples of 1000 subjects.

[Table 1 about here.]

5 Conditional independence assumption: a residual analysis

The conditional independence of the markers and the event can not be strictly

controlled because the latent classes are not observed. A few methods were

proposed based on the Bandeen-Roche et al. (1997) posterior individual af-

fectation. Lin et al. (2002) and (2004) proposed to evaluate the dependency
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between the event and the marker after stratification on the posterior latent

classes by using a weighted survival analysis in which a function of the markers

is included as covariate. To avoid any posterior classification and the choice of

a particular estimated function of the markers as covariate, we propose instead

to evaluate the conditional independence assumption using a simple residual

analysis. This approach was inspired from Dobson and Henderson (2003) who

investigated the first and second moments of the longitudinal residuals condi-

tionally on the time-to-event data in order to graphically assess the link be-

tween dropout and the longitudinal residuals in a shared-random-effect model

(Henderson et al. (2000)).

5.1 Time-to-event conditional residuals for testing the conditional indepen-

dence

The residuals of the transformed markers obtained from the joint model con-

ditionally on the time-to-event data are:

Rijk = hk(yijk; η̂k) − E
(

hk(yijk; η̂k)|Ti, Di; θ̂
)

= Z(tijk)
(

ui − E
(

ui|Ti, Di; θ̂
))

+ αik + εijk,

(5.1)

where the random-effects ui ∼
∑G

g=1 πigN (µg, ωgB) and

E
(

ui|Ti, Di; θ̂
)

=
G

∑

g=1

E(ui|ci = g; θ̂)P (ci = g|Ti, Di; θ̂).

Using the Bayes theorem, we found

E
(

ui|Ti, Di; θ̂
)

=

∑G
g=1 µgπigλ(Ti|ci = g; θ̂)DiS(Ti|ci = g; θ̂)

∑G
g=1 πigλ(Ti|ci = g; θ̂)DiS(Ti|ci = g; θ̂)

.
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The standardized vector of residuals R̃i = (R̃i11, ..., R̃ijk, ..., R̃iniKK)T is ob-

tained from Ri = (Ri11, ..., Rijk, ..., RiniKK)T using the Cholesky transforma-

tion of V −1
Ri

where

VRi
= V (Ri|Ti, Di; θ̂) =





























Σ1 0 0

0
. . . 0

0 0 ΣK





























+





























Z1
i

...

ZK
i





























V (ui|Ti, Di; θ̂)





Z1T
i . . . ZKT

i





(5.2)

and V (ui|Ti, Di; θ̂) =
1

f(Ti, Di; θ̂)

G
∑

g=1

πigf(Ti, Di|ci = g; θ̂)(ω2
gB + µ2

g)

−




1

f(Ti, Di; θ̂)

G
∑

g=1

πigf(Ti, Di|ci = g; θ̂)µg





2

.

(5.3)

Under the hypothesis of conditional independence, the standardized residuals

R̃ijk are independently distributed with zero mean and unit variance given

the time-to-event. Thus, to evaluate this assumption, the means of the stan-

dardized residuals between censored and uncensored subjects can be simply

compared.

5.2 Evaluation of the test for conditional independence

To evaluate the type I error and the statistical power of this test, we conducted

a simulation study in a simple case of linear latent class model with a single
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longitudinal marker. Samples of 500 and 1000 subjects were simulated using

the same design as described in section 4 except that left truncation was

uniform in [0, 10] and right censoring was uniform from entry to 30. The

simulated model was

Λi(t) |ci=g = (µ0g + u0i) + (µ1g + u1i) × t + εijk,

with ui =

















u0i

u1i

















∼ N

































0

0

















,

















σ2
0 = 5 σ01 = −2

σ01 = −2 σ2
1 = 1

































and εij ∼iid N (0, σ2
ε = 1),

and λ(t) |ci=g = ζ1gζ2g(ζ1gt)
ζ2g−1exp(−δ

u0i

σ0

).

Under the null hypothesis H0, a 2 latent class model was simulated with

π1 = π2 = 0.5, (µ01, µ11) = (15, 2) and (µ02, µ12) = (12, 0) and the Weibull

parameters chosen to obtain an event-free-survival at time 15 of 0.96 in class

1 and 0.65 in class 2 (with δ = 0). As alternative hypotheses, we considered

two shared random-effect models with 2 latent classes (Ha1 : δ = 0.5 and

Ha2 : δ = 1) and two models with 3 latent classes (and δ = 0) with π1 = π2 =

π3 = 0.33, (µ01, µ11) = (15, 2), (µ02, µ12) = (12, 0) and (µ03, µ13) = (9,−1).

The event-free survivals at time 15 were 0.96 in class 1, 0.84 in class 2 and

0.65 in class 3 for the Ha3 model and 0.99, 0.84 and 0.35 for the Ha4 model.

Whatever the simulated sample, a two latent class model was estimated and

the means of the residuals among the subjects who experienced the event and

those who did not were compared over 500 replicates. The estimated type I

errors under H0 and the statistical power under alternative hypotheses are dis-

played in Table 2 for two sample sizes (N=500 and N=1000). The estimated

type I errors were close to the nominal values for the two sample sizes, with
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8.0%, 3.8% and 0.8% (for N=500), and 11.2%, 6.0% and 1.4% (for N=1000)

for a nominal value of 10%, 5% and 1%. Under the shared random-effect mod-

els Ha1 and Ha2, and using the threshold of 5%, the power was respectively

34.0% and 94.6% with N=500 and 63.6% and 100% with N=1000. To give an

idea of the impact of these misspecifications on the estimated parameters, the

coverage rates for the fixed effects in the mixed model with N=500 ranged

from 92.8% to 94.4% for Ha1 and from 88% to 92.4% for Ha2, and the rela-

tive bias were less than 1% and less than 2%. The relative biases for the 4

parameters from the survival model with N=500 were 3.3%, 7.6%, 0.7% and

3.1% for Ha1 and 2%, 16%, 2% and 11% for Ha2. Thus these misspecifications

had only a modest impact on parameter estimates (especially for Ha1). When

the misspecification was due to a larger number of classes, the power was

34.0% for Ha3 and 78.8% for Ha4 with N=500, and 67.0% for Ha3 and 97.8%

for Ha4 with N=1000, indicating a higher power with clearer separations of

classes. This simulation study showed that a simple comparison test of means

of the residuals conditional on the event was a satisfying test to evaluate the

conditional independence in a latent class model.

[Table 2 about here.]

6 Application

6.1 The PAQUID dataset

The aim of the application was to study the association between the profiles of

cognitive decline with age in the elderly and the occurrence of dementia. Data

came from the French prospective cohort study PAQUID initiated in 1988 to
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study normal and pathological aging (Letenneur et al. (1994)). Subjects in-

cluded in the cohort were 65 and older at initial visit and were followed 6 times

with a visit at 1, 3, 5, 8, 10 and 13 years after the initial visit. At each visit,

a battery of psychometric tests was completed, and a two-phases screening

procedure was carried out for the diagnosis of dementia. Three psychometric

tests were considered in the present study: the Isaacs Set Test (IST) (Isaacs

and Kennie (1973)) shortened at 15 seconds which evaluates verbal fluency,

the Benton Visual Retention Test (BVRT) (Benton (1965)) which evaluates

visual memory and the Digit Symbol Substitution Test of Wechsler (DSSTW)

(Wechsler (1981)) which evaluates attention and logical reasoning. For the

three tests, low values indicate a more severe impairment. The sample was

constituted of 2383 subjects living in Gironde and free of dementia at in-

clusion: 355 subjects had a positive diagnosis of dementia during the follow

up with a mean age at dementia of 85.04 (SE=5.77) and 2028 subjects were

free of dementia at their last visit with a mean age at censoring of 80.25

(SE=6.83). Dementia was considered as a terminating event so that measures

collected after diagnosis were not included in the analyses. The median num-

ber of measures per subject was 4 (interquartile range IQR=2-6) for the IST,

3 (IQR=2-6) for the BVRT and 2 (IQR=1-4) for the DSSTW. Two covari-

ates were considered, gender and educational level in two classes (subjects

who graduated from primary school e.g. obtained the CEP, the first French

diploma, and those who did not). Among the 2383 subjects, 1382 were women

(58%) and 692 (29%) did not graduate from primary school.
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6.2 The joint latent class model

The common factor is defined between 0 and 1, 0 indicating the minimal cogni-

tive level and 1 the maximal cognitive level. We assumed a quadratic function

of age for the common factor in order to account for nonlinear cognitive de-

clines with age. Gender and education (CEP versus not) were included in the

class membership probability and in the risk of dementia after adjustment

for the latent classes. To take into account the first passing effect described

in Jacqmin-Gadda et al. (1997) (worse scores at baseline compared to other

visits), we also included a binary indicator for the initial visit as a covariate.

Finally, left-truncation was handled as explained in section 3.3 since subjects

demented at age of entry in the cohort were excluded, and age was the time

basis in the model. The joint latent class model we applied was

Λi(t) |ci=g= u0ig + u1ig × AGEi + u2ig × AGE2
i + βIt=T0i

,

λ(t) |ci=g= λ0g(t)e
GENDERiδ1+CEPiδ2 ,

hk(Yijk; (η1k, η2k)) = Λi(tijk) + αik + εijk,

and P (ci = g) =
eξ0g+GENDERiξ1g+CEPiξ2g

∑G
l=1 eξ0l+GENDERiξ1l+CEPiξ2l

,

where uig = (u0ig, u1ig, u2ig)
T ∼ N ((µ0g, µ1g, µ2g)

T , ω2
gB). We performed pre-

liminary analyses without covariates and with a common random-effect vari-

ance across the classes to compare 3 formulations of the survival model: a para-

metric Weibull model and a semi-parametric model both with the assumption

of proportional hazard between classes, and a Weibull model stratified on the

latent classes. Using the BIC selection criterion (Schwartz (1978)), a model

with 4 classes was chosen. Based on this preliminary analysis, we retained

the parametric model with proportional hazards over classes because it had
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a better AIC than the stratified parametric model (AIC=135,269 vs 135,274)

and the four estimated class-specific risk functions were very similar to those

estimated by the semi-parametric approach using 5 knots (Figure 1).

[Fig. 1 about here.]

We then estimated this latent class model including covariates for a number

of latent classes varying from 2 to 6. According to the BIC selection criterion,

the model with 5 latent classes was retained (see table 3). The five latent

classes differed by their cognitive evolution with age and their risk of dementia

represented in figure 2.

[Table 3 about here.]

[Fig. 2 about here.]

[Table 4 about here.]

Estimates of the 5-class model are given in table 4. The probability of belong-

ing to the latent classes was significantly associated with educational level

(p < 0.001 using a 4df Likelihood ratio test (LRT)) but not with gender

(p = 0.084 using a 4df LRT). Classes 2 and 4 consisted almost exclusively

of subjects without CEP since the ratio of the probability to be in class 2

(respectively class 4) over the probability to be in class 1 was eξ22 = 3.9.10−3

(respectively eξ24 = 7.7.10−4) for subjects with CEP compared to subjects

without CEP. In contrast, the odds-ratio to be in class 5 vs. class 1 was 0.012

for subjects with CEP compared to subjects without CEP. Conversely, class

1 and 3 included mostly subjects with CEP (explaining the large variance for

the parameters in class 3). Consequently, latent classes 1 and 3 had a higher

mean initial level than classes 2 and 4. Then, latent classes 1 and 2 differed
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respectively from latent classes 3 and 4 by the shape of the cognitive decline

with age. While latent classes 1 and 2 were characterized by a slight cogni-

tive decline with age and a low probability of dementia, classes 3 and 4 were

characterized by a sharper cognitive decline with age and a higher probability

of dementia. At last, latent class 5 was characterized by a dramatic cognitive

decline with age and a probability of dementia which reached 1 at 85 years

old. Adjusted for the latent classes, graduated subjects had a higher risk of

dementia (p = 0.0055 using a Wald test). This means that for a same profile

of cognitive evolution, highly educated subjects had a higher risk of being

diagnosed as demented than lower educated subjects.

6.3 Adequation of the model

Specification of the survival model was evaluated in the preliminary analysis

which showed both goodness-of-fit of the Weibull hazard function and correct

assumption of proportional hazards over classes (figure 1). In this section, we

present other analyses that evaluate goodness-of-fit of the model.

6.3.1 The posterior classification

For each latent class, table 5 presents the means of the posterior probabilities

of belonging to this latent class and to the four others.

[Table 5 about here.]

Whatever the latent class, the mean of the probabilities of belonging to the

class in which the subjects were classified was between 0.68 and 0.78 while

the means of the probabilities in the other classes was less than 0.20. This
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suggests an unambiguous classification. Nevertheless, the non-diagonal terms

indicated that subjects classified in class 1 had a non-negligible probability

of belonging to class 3 (mean of 0.126) and conversely (mean of 0.154). In

the same way, subjects classified in class 2 had a non-negligible probability of

belonging to class 4 (mean of 0.140) and conversely (mean of 0.204).

6.3.2 Longitudinal multivariate model

We evaluated the adequation of the model to the observed repeated measures

by comparing the predicted mean evolution and the observed mean evolution

for each posterior latent class and each marker. The prediction of an observa-

tion in each latent class g, ŷijk|ci=g = E(h−1
k (ỹijk; η̂k)|θ̂; ci = g) was computed

using a numerical integration of h−1
k (ỹijk; η̂k) over the distribution of ỹik|ci=g

that is a multivariate Gaussian distribution with mean vector and variance

covariance matrix defined in (3.3) and (3.4) (details are given in Proust et al.

(2006)). In a second step, the predicted mean evolution for each marker and

each latent class was obtained by computing the mean of the predicted values

for subjects observed in a window of time weighted by the individual posterior

probability π̂
y,T
ig of belonging to the class g. This predicted evolution was fi-

nally compared to the mean observed evolution obtained by computing the

mean of the observations in the same window of time weighted by π̂
y,T
ig . Figure

3 displays the predicted subject-specific mean evolution which includes the

predicted individual random coefficients. It shows a very good adequation to

the observed repeated measures.

[Fig. 3 about here.]
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6.3.3 Conditional independence assumption

We evaluated the conditional independence assumption by comparing the

means of the standardized conditional residuals given by (5.1) and (5.2) ac-

cording to the occurrence of the event in the models including from 2 to 6

latent classes; p-values are given in table 3. The means of the residuals were

no longer significantly different between demented and non-demented subjects

in the model with 5 latent classes, suggesting that the conditional indepen-

dence assumption in the selected 5-class model was satisfying.

7 Concluding remarks

We developed a latent class approach to jointly model the multivariate quan-

titative outcomes and the time-to-event. Joint latent class models had been

yet restricted to the study of a single and Gaussian longitudinal outcome (Lin

et al. (2002); Lin et al. (2004)) while it is not rare in applications to deal with

possibly non Gaussian quantitative outcomes and/or several outcomes of the

same latent quantity (Proust et al. (2006)).

The application emphasized that the model is particularly well designed for

the study of cognitive aging and risk of dementia. Indeed, first it allows to

explore heterogeneity of cognitive aging by distinguishing several profiles of

normal cognitive change over age from the pathological profile of decline asso-

ciated with high risk of dementia. Thanks to the latent classes, covariate effects

on the probability of belonging to each cognitive profile can also be separated

from effects on the risk of dementia given the cognitive profiles. Second as the

longitudinal part of the model is a multivariate model with a latent process

(Proust et al. (2006)), the analysis can focus on the evolution of the latent cog-
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nitive level rather than on a specific psychometric test. Thus, several tests can

be modeled at the same time, and biases due to misspecification of a Gaussian

distribution for the tests are avoided by estimating nonlinear transformations

between tests and latent process. To account for variability over markers, we

chose to include marker-specific random-intercepts that were highly signifi-

cant. Additional marker-specific random-slopes could also be added in the

model in order to incorporate time-varying variability over markers. However,

in our application, such additional inclusion did not change the results in terms

of optimal number of classes and parameter estimates. Finally as the time to

dementia is modeled instead of dementia status at a given time (Proust-Lima

et al. (2007), selection biases are avoided and cognitive decline is described

according to age instead of according to the time-to-diagnosis.

In addition to a parametric specification of the risk function, we proposed a

semi-parametric approach based on splines functions and a penalized likeli-

hood approach. Until now, semi-parametric specifications had only been de-

veloped for simpler cases without joint modelling of longitudinal markers nor

latent classes, and evaluation of the quality of the estimates had been assessed

(Joly et al. (1998),Joly and Commenges (1999)). In joint modelling context,

semi-parametric models are a lot more computationally intensive. However, we

would recommend to use them for assessing the goodness-of-fit of parametric

risk functions and as an alternative model when parametric functions are not

adequate.

It has been shown recently that a deviation from the assumption of conditional

independence in latent class models induced biased estimates (Pepe and Janes

(2007)). For assessing this pivotal assumption, we proposed a simple test that

compares the mean of the longitudinal residuals conditional on the event.
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This test that avoids posterior classification and assumptions regarding the

conditional dependency may also be used as a criterion to select the number of

classes as an alternative to the BIC. Another way of evaluating the conditional

independence assumption could consist in testing the need of a shared random-

effect in addition to the latent class structure. However, estimation of such

models would cumulate the numerical problems from the latent class and the

shared random-effect approaches.
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line) or stratified on the latent classes (dashed and dotted line) in the 4-class model
without adjustment for covariates.

30



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 65  70  75  80  85  90  95

la
te

nt
 p

ro
ce

ss

age (years)

(A) predicted evolution

class 1 
class 2 
class 3 
class 4 
class 5 

 0

 0.2

 0.4

 0.6

 0.8

 1

 65  70  75  80  85  90  95

pr
ob

ab
ilit

y 
of

 b
ei

ng
 fr

ee
 o

f d
em

en
tia

age (years)

(B) predicted event-free survival

class 1
class 2
class 3
class 4
class 5

Fig. 2. (A) Predicted cognitive evolution according to age and (B) predicted survival
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without CEP.
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Fig. 3. Subject specific predicted weighted mean evolution (x) and observed
weighted mean evolution (—) with 95% confidence bands (- - -) for each marker
and each latent class.
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Table 1
Mean estimate, relative bias, empirical standard error (SE), asymptotical SE and
coverage rate for the 500 replications of the joint model for two classes and two
markers and a sample of 500 subjects.

parameter simulated mean relative empirical asymptotic coverage

value estimate bias (%) SE SE rate (%)

π
†
1 1.099 1.078 -1.89 0.197 0.183 92.4

ζ11 0.102 0.102 -0.09 0.0007 0.0007 95.6

ζ12 4.719 4.732 0.27 0.502 0.486 93.2

ζ21 0.109 0.109 0.01 0.0005 0.0005 92.2

ζ22 4.432 4.513 1.82 0.321 0.312 94.2

µ01 0.644 0.644 -0.03 0.013 0.013 95.0

µ02 0.613 0.613 -0.02 0.017 0.017 95.0

µ11 -0.062 -0.061 -1.62 0.0037 0.0037 93.6

µ12 -0.124 -0.122 -1.19 0.0081 0.0078 93.2

η
†
11 0.332 0.322 -3.06 0.047 0.046 94.4

η
†
21 -2.415 -2.398 -0.69 0.058 0.056 93.6

η
†
12 0.428 0.416 -2.65 0.050 0.048 94.8

η
†
22 -2.400 -2.383 -0.72 0.060 0.058 92.0

η
†
13 -0.582 -0.583 -0.24 0.041 0.041 95.0

η
†
23 -2.256 -2.245 -0.48 0.043 0.043 94.4

σ
†
1 0.097 0.095 -2.13 0.0060 0.0057 91.6

σ
†
2 -0.013 -0.013 -1.33 0.0023 0.0022 93.8

σ
†
3 0.024 0.024 -2.11 0.0021 0.0020 93.0

σ(1)
ε 0.048 0.047 -1.47 0.0024 0.0023 93.4

σ(2)
ε 0.051 0.050 -1.67 0.0025 0.0024 92.0

σ(2)
ε 0.040 0.039 -1.38 0.0020 0.0019 93.0

† Reparametrized parameters. Latent class probability π1 was replaced by its
logit correspondence. Canonical parameters η of Beta functions were replaced
by transformations of the means and variances of the Beta functions. Vari-
ance covariance parameters (σ2

0, σ01, σ
2
1) were replaced by the corresponding

Cholesky parameters (σ1, σ2, σ3).
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Table 2
Estimated type I error under H0 and statistical power (in %) under the 4 alternative
hypotheses (Ha1, Ha2, Ha3 and Ha4) for a threshold of 5% over 500 simulations with
two sample sizes (N=500 and N=1000).

Hypothesis N=500 N=1000

H0 3.8 6.0

Ha1 34.0 63.6

Ha2 94.6 100.0

Ha3 34.0 67.0

Ha4 67.0 97.8
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Table 3
Adequation of the adjusted latent class model with the proportional risk over the
classes on the 2383-subjects sample (number of latent classes G, number of param-
eters p, log-likelihood L, BIC criterion, p-value of the test comparing the residuals
means according to the event).

G p L BIC p-value for residuals means

2 34 -67390.49 135045.38 p < 0.001

3 42 -67262.12 134850.83 p = 0.037

4 50 -67186.32 134761.43 p = 0.004

5 58 -67141.29 134733.60 p = 0.486

6 66 -67115.15 134743.53 p = 0.318
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Table 4
Estimates (standard-errors) of the adjusted joint latent class model including 5
classes.

Common Estimates specific to the latent classes

Parameter Estimates 1 2 3 4 5

class membership probability:

Intercept 0 4.338 -10.944 3.714 2.104

(0.942) (88.28) (0.947) (0.975)

Gender† 0 -0.991 -0.155 -0.503 -0.245

(p = 0.084) (0.307) (0.230) (0.392) (0.315)

CEP‡ 0 -5.535 9.932 -7.163 -4.435

(p < 0.0001) (0.983) (88.29) (1.272) (0.960)

Risk of dementia:
√

ζ1 0.099

(0.001)
√

ζ2 5.302

(0.284)

δ0g 1 1.879 3.686 4.927 6.572

(0.337) (0.337) (0.418) (0.401)

Gender† -0.129

(0.145)

CEP‡ 0.787

(0.269)

Longitudinal multivariate model:

Intercept 0.696 0.565 0.684 0.521 0.574

(0.0096) (0.012) (0.016) (0.018) (0.031)

Age§ -0.0289 -0.0300 -0.0374 -0.0034 0.129

(0.0075) (0.012) (0.0223) (0.0197) (0.057)

Age2 § -0.018 -0.0135 -0.0497 -0.0489 -0.245

(0.0026) ( 0.0039) (0.111) (0.0083) (0.032)

First visit T0 -0.017

(0.001)
† reference: women
‡ reference: subjects without CEP
§ Age in decades from 65 years old

(

age − 65

10

)
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Table 5
Mean of the posterior probabilities of belonging to each latent class according to
the final classification.

Final Number of Mean of the probabilities of belonging to each class

classification subjects 1 2 3 4 5

1 73 0.779 0.083 0.126 0.003 0.009

2 187 0.073 0.723 0.040 0.140 0.024

3 197 0.154 0.106 0.681 0.038 0.021

4 652 0.001 0.204 0.002 0.727 0.066

5 1274 0.012 0.044 0.074 0.097 0.773
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