A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system
Michal Pásek, Jiri Simurda, Clive Orchard, Georges Christé

To cite this version:

HAL Id: inserm-00326040
https://www.hal.inserm.fr/inserm-00326040
Submitted on 1 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Appendix 2

Fig. 6A represents the simplified equivalent electrical circuit of the cardiac cell connected to the voltage source \(V_c\) through electrode resistance \(R_{cl}\), including the transverse-axial tubular system (TATS). It is applicable for small (sub-threshold) voltage variations around resting membrane voltage. \(C_s\) and \(C_t\) are the capacitance, and \(R_{ms}\) and \(R_{mt}\) the resistance, of the surface and tubular membranes, respectively. \(V_{ms}\) and \(V_{mt}\) are membrane voltages. \(R_\alpha\) stands for luminal resistance in a single-compartment approximation.

![Circuit Diagram](image)

The circuit is described by a set of two differential equations

\[
\frac{dV_{ms}}{dt} = a_{11} V_{ms} + a_{12} V_{mt} + \frac{V_c}{R_{cl} C_s}, \quad \frac{dV_{mt}}{dt} = a_{21} V_{ms} + a_{22} V_{mt}
\]

(1)

where

\[
a_{11} = -\frac{1}{C_s} \left(\frac{1}{R_{cl}} + \frac{1}{R_{st}} + \frac{1}{R_{ms}} \right), \quad a_{12} = \frac{1}{C_s R_{st}}, \quad a_{21} = \frac{1}{C_t R_{st}}, \quad a_{22} = -\frac{1}{C_t} \left(\frac{1}{R_{st}} + \frac{1}{R_{mt}} \right)
\]

(2)

For measurement of membrane capacitance from the current responses to a small voltage step, membrane voltage \(V_c\) is constant and solution of equations (1) is expressed as a sum of two exponential functions and a constant

\[
V_{ms} = V_{s1} e^{-\frac{t}{\tau_1}} + V_{s2} e^{-\frac{t}{\tau_2}} + V_{s0}, \quad V_{mt} = V_{t1} e^{-\frac{t}{\tau_1}} + V_{t2} e^{-\frac{t}{\tau_2}} + V_{t0}.
\]

(3)

The time constants \(\tau_1\) and \(\tau_2\) are obtained from the roots \((\lambda_1, \lambda_2)\) of characteristic equation
\[
\lambda^2 - \lambda(a_{11} + a_{22}) + a_{11}a_{22} - a_{12}a_{21} = 0
\]

as

\[
\tau_1 = -\frac{1}{\lambda_1} = \frac{-2}{a_{11} + a_{22} + \sqrt{(a_{11} - a_{22})^2 + 4a_{12}a_{21}}},
\]

\[
\tau_2 = -\frac{1}{\lambda_2} = \frac{-2}{a_{11} + a_{22} - \sqrt{(a_{11} - a_{22})^2 + 4a_{12}a_{21}}}. \tag{4}
\]

The constants \(V_{s0}\) and \(V_{t0}\) depend only on the circuit resistances

\[
V_{s0} = V_c \frac{R_{ms}(R_{nt} + R_{mt})}{R_{ms}(R_{nt} + R_{mt}) + R_{el}(R_{nt} + R_{mt} + R_{ms})}, \quad V_{t0} = V_{s0} \frac{R_{nt}}{R_{nt} + R_{st}}. \tag{5}
\]

Assuming initial conditions \(V_{ms} = 0, \quad V_{mt} = 0\) and taking into account (2), (4) and (5), the magnitudes of exponential components can be calculated as

\[
V_{s1} = \frac{1}{A} \left[V_{s0}a_{21}a_{12} + V_{t0}(a_{22}a_{12} - a_{12}a_{21}) \right],
\]

\[
V_{s2} = \frac{1}{A} \left[V_{s0}a_{11}(\lambda_2 - a_{22}) + V_{t0}a_{12}(\lambda_2 - a_{22}) + V_{t0}a_{12}(\lambda_2 - a_{22}) \right],
\]

\[
V_{t1} = \frac{1}{A} \left[-V_{s0}a_{21}(a_{11} - \lambda_1) + V_{t0}(\lambda_2 - a_{22})(a_{11} - \lambda_1) \right], \tag{6}
\]

\[
V_{t2} = \frac{1}{A} \left[V_{s0}(a_{21}a_{11} - a_{21}\lambda_1) + V_{t0}a_{21}a_{12} \right].
\]

where

\[
A = -a_{21}a_{12} + a_{22}a_{11} - a_{11}\lambda_2 - a_{22}\lambda_1 + \lambda_1\lambda_2.
\]
The solution of equation (1) allows us to express the response of membrane current \(I_m \) to an imposed voltage step from resting voltage (regarded as zero voltage) to the level \(V_c \) considering the relation \(I_m = (V_c - V_{ms})/R_{el} \).

\[
I_m = I_1 e^{-t/\tau_1} + I_2 e^{-t/\tau_2} + I_0,
\]

(7)

where \(I_1 = -\frac{V_{s1}}{R_{el}}, \quad I_2 = -\frac{V_{s2}}{R_{el}}, \quad I_0 = \frac{V_c - V_{s0}}{R_{el}}. \)

If numeric values of passive electrical parameters adopted for our model cardiac cell are inserted into (6) and (7), the second exponential terms of \(V_s, V_t, \) and \(I_m \) related to the short time constant \(\tau_2 \sim 1 \) ms become negligible (in contrast to the situation in skeletal muscle cells). The time constant \(\tau_1 \) of the dominant component approaches the value corresponding to the limit conditions \(R_s \to 0, R_{ms} \to \infty, R_{st} \to \infty \) under which the cell would respond to small voltage steps by processes following single exponential course with time constant \(\tau = R_{el}(C_s + C_t). \).