A. Barnes, G. Livera, P. Huang, C. Sun, O. Neal et al., Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium, Journal of Biological Chemistry, vol.280, issue.9, pp.7997-8003, 2005.
DOI : 10.1074/jbc.M407521200

J. Beavo, P. Bechtel, and E. Krebs, Activation of Protein Kinase by Physiological Concentrations of Cyclic AMP, Proceedings of the National Academy of Sciences, vol.71, issue.9, pp.3580-3583, 1974.
DOI : 10.1073/pnas.71.9.3580

G. Bolger, S. Erdogan, R. Jones, K. Loughney, G. Scotland et al., Characterization of five different proteins produced by alternatively spliced mRNAs from the human cAMP-specific phosphodiesterase PDE4D gene, Biochemical Journal, vol.328, issue.2, pp.539-548, 1997.
DOI : 10.1042/bj3280539

L. Brunton, J. Hayes, and S. Mayer, Functional compartmentation of cAMP and protein kinase in heart, Adv Cyclic Nucleotide Res, vol.14, pp.391-397, 1981.

D. Carr, R. Stofko-hahn, I. Fraser, S. Bishop, T. Acott et al., Interaction of the regulatory subunit (RII) of cAMPdependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif, J Biol Chem, vol.266, pp.14188-14192, 1991.

H. Cheng, B. Kemp, R. Pearson, A. Smith, L. Misconi et al., A potent synthetic peptide inhibitor of the cAMPdependent protein kinase, J Biol Chem, vol.261, pp.989-992, 1986.

J. Corbin, P. Sugden, T. Lincoln, and S. Keely, Compartmentalization of adenosine 3:5-monophosphate and adenosine 3:5-monophosphate- dependent protein kinase in heart tissue, J Biol Chem, vol.252, pp.3854-3861, 1977.

L. Dipilato, X. Cheng, and J. Zhang, Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments, Proceedings of the National Academy of Sciences, vol.101, issue.47, pp.16513-16518, 2004.
DOI : 10.1073/pnas.0405973101

K. Dodge-kafka, J. Soughayer, G. Pare, C. Michel, J. Langeberg et al., The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways, Nature, vol.279, issue.7058, pp.574-578, 2005.
DOI : 10.1074/jbc.M201868200

K. Dodge, S. Khouangsathiene, M. Kapiloff, R. Mouton, E. Hill et al., mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module, The EMBO Journal, vol.20, issue.8, pp.1921-1930, 2001.
DOI : 10.1093/emboj/20.8.1921

S. Doskeland and D. Ogreid, Characterization of the interchain and intrachain interactions between the binding sites of the free regulatory moiety of protein kinase I, J Biol Chem, vol.259, pp.2291-2301, 1984.

K. Fagan, J. Schaack, A. Zweifach, and D. Cooper, Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells, FEBS Letters, vol.351, issue.1-2, pp.85-90, 2001.
DOI : 10.1016/S0014-5793(01)02564-9

I. Fraser, S. Tavalin, L. Lester, L. Langeberg, A. Westphal et al., A novel lipid-anchored A-kinase Anchoring Protein facilitates cAMP-responsive membrane events, The EMBO Journal, vol.17, issue.8, pp.2261-2272, 1998.
DOI : 10.1093/emboj/17.8.2261

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170570

S. Frings, R. Seifert, M. Godde, and U. Kaupp, Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels, Neuron, vol.15, issue.1, pp.169-179, 1995.
DOI : 10.1016/0896-6273(95)90074-8

P. Gray, J. Scott, and W. Catterall, Regulation of ion channels by cAMP-dependent protein kinase and A-kinase anchoring proteins, Current Opinion in Neurobiology, vol.8, issue.3, pp.330-334, 1998.
DOI : 10.1016/S0959-4388(98)80057-3

G. Hansen, J. S. Umetsu, D. Conti, and M. , Absence of muscarinic cholinergic airway responses in mice deficient in the cyclic nucleotide phosphodiesterase PDE4D, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6751-6756, 2000.
DOI : 10.1073/pnas.97.12.6751

H. Hidaka, M. Watanabe, and H. Tokumitsu, Search for functional substrate proteins of protein kinases and their selective inhibitors, Adv Second Messenger Phosphoprotein Res, vol.24, pp.485-490, 1990.

F. Hofmann, P. Bechtel, and E. Krebs, Concentrations of cyclic AMPdependent protein kinase subunits in various tissues, J Biol Chem, vol.252, pp.1441-1447, 1977.

G. Houge, R. Steinberg, D. Ogreid, and S. Doskeland, The rate of recombination of the subunits (RI and C) of cAMP-dependent protein kinase C330 FEEDBACK REGULATION OF CAMP SIGNALS

M. Houslay and G. Baillie, -adrenoceptor signalling to activation of ERK: Scheme 1, Biochemical Society Transactions, vol.33, issue.6, pp.1333-1336, 2005.
DOI : 10.1042/BST0331333

URL : https://hal.archives-ouvertes.fr/hal-00479279

M. Houslay, M. Sullivan, and G. Bolger, The Multienzyme PDE4 Cyclic Adenosine Monophosphate???Specific Phosphodiesterase Family: Intracellular Targeting, Regulation, and Selective Inhibition by Compounds Exerting Anti-inflammatory and Antidepressant Actions, Adv Pharmacol, vol.44, pp.225-342, 1998.
DOI : 10.1016/S1054-3589(08)60128-3

L. Huang and S. Taylor, Dissecting cAMP Binding Domain A in the RI?? Subunit of cAMP-dependent Protein Kinase: DISTINCT SUBSITES FOR RECOGNITION OF cAMP AND THE CATALYTIC SUBUNIT, Journal of Biological Chemistry, vol.273, issue.41, pp.26739-26746, 1998.
DOI : 10.1074/jbc.273.41.26739

J. Jurevicius and R. Fischmeister, cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists., Proceedings of the National Academy of Sciences, vol.93, issue.1, pp.295-299, 1996.
DOI : 10.1073/pnas.93.1.295

J. Jurevicius, V. Skeberdis, and R. Fischmeister, Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following ??2-adrenergic stimulation of ICa,L in frog ventricular myocytes, The Journal of Physiology, vol.551, issue.1, pp.239-252, 2003.
DOI : 10.1113/jphysiol.2003.045211

U. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1038/227680a0

M. Mongillo, T. Mcsorley, S. Evellin, A. Sood, V. Lissandron et al., Fluorescence Resonance Energy Transfer-Based Analysis of cAMP Dynamics in Live Neonatal Rat Cardiac Myocytes Reveals Distinct Functions of Compartmentalized Phosphodiesterases, Circulation Research, vol.95, issue.1, pp.67-75, 2004.
DOI : 10.1161/01.RES.0000134629.84732.11

V. Nikolaev, M. Bü-nemann, L. Hein, A. Hannawacker, and M. Lohse, Novel Single Chain cAMP Sensors for Receptor-induced Signal Propagation, Journal of Biological Chemistry, vol.279, issue.36, pp.37215-37218, 2004.
DOI : 10.1074/jbc.C400302200

L. Piggott, K. Hassell, Z. Berkova, A. Morris, M. Silberbach et al., Natriuretic Peptides and Nitric Oxide Stimulate cGMP Synthesis in Different Cellular Compartments, The Journal of General Physiology, vol.274, issue.1, pp.3-14, 2006.
DOI : 10.1074/jbc.M000786200

B. Ponsioen, J. Zhao, J. Riedl, F. Zwartkruis, G. Van-der-krogt et al., Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator, EMBO reports, vol.86, issue.12, pp.1176-1180, 2004.
DOI : 10.1093/emboj/17.20.5905

M. Reeves, B. Leigh, and P. England, The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors, Biochemical Journal, vol.241, issue.2, pp.535-541, 1987.
DOI : 10.1042/bj2410535

T. Rich, K. Fagan, H. Nakata, J. Schaack, D. Cooper et al., Cyclic Nucleotide???Gated Channels Colocalize with Adenylyl Cyclase in Regions of Restricted Camp Diffusion, The Journal of General Physiology, vol.35, issue.2, pp.147-161, 2000.
DOI : 10.1073/pnas.90.13.6295

T. Rich, K. Fagan, T. Tse, J. Schaack, D. Cooper et al., A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell, Proceedings of the National Academy of Sciences, vol.98, issue.23, pp.13049-13054, 2001.
DOI : 10.1073/pnas.221381398

T. Rich, J. Karpen, T. Rich, T. Tse, J. Rohan et al., Review Article: Cyclic AMP Sensors in Living Cells: What Signals Can They Actually Measure?, Annals of Biomedical Engineering, vol.30, issue.8, pp.1088-1099, 2001.
DOI : 10.1114/1.1511242

W. Richter and M. Conti, The Oligomerization State Determines Regulatory Properties and Inhibitor Sensitivity of Type 4 cAMP-specific Phosphodiesterases, Journal of Biological Chemistry, vol.279, issue.29, pp.30338-30348, 2004.
DOI : 10.1074/jbc.M312687200

W. Richter, S. Jin, and M. Conti, Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue, Biochemical Journal, vol.388, issue.3, pp.803-811, 2005.
DOI : 10.1042/BJ20050030

F. Rochais, A. Abi-gerges, K. Horner, F. Lefebvre, D. Cooper et al., A Specific Pattern of Phosphodiesterases Controls the cAMP Signals Generated by Different Gs-Coupled Receptors in Adult Rat Ventricular Myocytes, Circulation Research, vol.98, issue.8, pp.1081-1088, 2006.
DOI : 10.1161/01.RES.0000218493.09370.8e

URL : https://hal.archives-ouvertes.fr/inserm-00000047

F. Rochais, G. Vandecasteele, F. Lefebvre, C. Lugnier, H. Lum et al., Negative Feedback Exerted by cAMP-dependent Protein Kinase and cAMP Phosphodiesterase on Subsarcolemmal cAMP Signals in Intact Cardiac Myocytes, Journal of Biological Chemistry, vol.279, issue.50, pp.52095-52105, 2004.
DOI : 10.1074/jbc.M405697200

S. Sayner, M. Alexeyev, C. Dessauer, and T. Stevens, Soluble Adenylyl Cyclase Reveals the Significance of cAMP Compartmentation on Pulmonary Microvascular Endothelial Cell Barrier, Circulation Research, vol.98, issue.5, pp.675-681, 2006.
DOI : 10.1161/01.RES.0000209516.84815.3e

C. Sette and M. Conti, Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation, J Biol Chem, vol.271, pp.16526-16534, 1996.

C. Sette, S. Iona, and M. Conti, The short-term activation of a rolipramsensitive , cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation, J Biol Chem, vol.269, pp.9245-9252, 1994.

S. Smith, H. White, J. Siegel, and E. Krebs, Cyclic AMP-dependent protein kinase I: Cyclic nucleotide binding, structural changes, and release of the catalytic subunits, Proceedings of the National Academy of Sciences, vol.78, issue.3, pp.1591-1595, 1981.
DOI : 10.1073/pnas.78.3.1591

E. Sutherland, Studies on the Mechanism of Hormone Action, Science, vol.177, issue.4047, pp.401-408, 1972.
DOI : 10.1126/science.177.4047.401

W. Thompson and M. Appleman, Multiple cyclic nucleotide phosphodiesterase activities from rat brain, Biochemistry, vol.10, pp.311-316, 1971.

D. Willoughby, W. Wong, J. Schaack, J. Scott, and D. Cooper, An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics, The EMBO Journal, vol.295, issue.10, pp.2051-2061, 2006.
DOI : 10.1038/sj.emboj.7601113

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462982

W. Wong and J. Scott, AKAP signalling complexes: focal points in space and time, Nature Reviews Molecular Cell Biology, vol.92, issue.12, pp.959-970, 2004.
DOI : 10.1038/35050030

Y. Xiang, F. Naro, M. Zoudilova, S. Jin, M. Conti et al., Phosphodiesterase 4D is required for ??2 adrenoceptor subtype-specific signaling in cardiac myocytes, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.909-914, 2005.
DOI : 10.1073/pnas.0405263102

M. Zanolo and T. Pozzan, Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes, C331 FEEDBACK REGULATION OF CAMP SIGNALS IN HEK-293 CELLS, pp.1711-1715, 2002.