D. Jung, C. Giallourakis, R. Mostoslavsky, and F. W. Alt, MECHANISM AND CONTROL OF V(D)J RECOMBINATION AT THE IMMUNOGLOBULIN HEAVY CHAIN LOCUS, Annual Review of Immunology, vol.24, issue.1, pp.541-570, 2006.
DOI : 10.1146/annurev.immunol.23.021704.115830

Z. Li, C. J. Woo, M. D. Iglesias-ussel, D. Ronai, and M. D. Scharff, The generation of antibody diversity through somatic hypermutation and class switch recombination, Genes & Development, vol.18, issue.1, pp.1-11, 2004.
DOI : 10.1101/gad.1161904

M. Muramatsu, V. S. Sankaranand, S. Anant, M. Sugai, K. Kinoshita et al., Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells, Journal of Biological Chemistry, vol.274, issue.26, pp.18470-18476, 1999.
DOI : 10.1074/jbc.274.26.18470

M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai et al., Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme, Cell, vol.102, issue.5, pp.553-563, 2000.
DOI : 10.1016/S0092-8674(00)00078-7

L. Pasqualucci, P. Neumeister, T. Goossens, G. Nanjangud, R. S. Chaganti et al., Hypermutation of multiple proto-oncogenes in B-cell diff use large-cell lymphomas, Nature, vol.412, issue.6844, pp.341-346, 2001.
DOI : 10.1038/35085588

C. L. Wang, R. A. Harper, and M. Wabl, Genome-wide somatic hypermutation, Proc. Natl. Acad. Sci. USA, pp.7352-7356, 2004.
DOI : 10.1073/pnas.0402009101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC409922

A. Martin and M. D. Scharff, Somatic hypermutation of the AID transgene in B and non-B cells, Proc. Natl. Acad. Sci. USA, pp.12304-12308, 2002.
DOI : 10.1073/pnas.192442899

F. Delbos, S. Aoufouchi, A. Faili, J. C. Weill, and C. A. Reynaud, DNA polymerase ?? is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse, The Journal of Experimental Medicine, vol.5, issue.1, pp.17-23, 2007.
DOI : 10.1084/jem.20042066

URL : https://hal.archives-ouvertes.fr/inserm-00297328

J. C. Weill and C. A. Reynaud, DNA polymerases in adaptive immunity, Nature Reviews Immunology, vol.4, issue.4, 2008.
DOI : 10.1038/nri2281

URL : https://hal.archives-ouvertes.fr/inserm-00281241

M. H. Glickman and A. Ciechanover, The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction, Physiological Reviews, vol.82, issue.2, pp.373-428, 2002.
DOI : 10.1152/physrev.00027.2001

L. Pasqualucci, Y. Kitaura, H. Gu, and R. Dalla-favera, PKAmediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells, Proc. Natl. Acad. Sci. USA, pp.395-400, 2006.

L. Baldi, K. Brown, G. Franzoso, and U. Siebenlist, Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha, J. Biol. Chem, vol.271, pp.376-379, 1996.

I. Fajerman, A. L. Schwartz, and A. Ciechanover, Degradation of the Id2 developmental regulator: targeting via N-terminal ubiquitination, Biochemical and Biophysical Research Communications, vol.314, issue.2, pp.505-512, 2004.
DOI : 10.1016/j.bbrc.2003.12.116

R. Ben-saadon, I. Fajerman, T. Ziv, U. Hellman, A. L. Schwartz et al., The Tumor Suppressor Protein p16INK4a and the Human Papillomavirus Oncoprotein-58 E7 Are Naturally Occurring Lysine-less Proteins That Are Degraded by the Ubiquitin System: DIRECT EVIDENCE FOR UBIQUITINATION AT THE N-TERMINAL RESIDUE, Journal of Biological Chemistry, vol.279, issue.40, pp.41414-41421, 2004.
DOI : 10.1074/jbc.M407201200

K. Breitschopf, E. Bengal, T. Ziv, A. Admon, and A. Ciechanover, A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein, The EMBO Journal, vol.17, issue.20, pp.5964-5973, 1998.
DOI : 10.1093/emboj/17.20.5964

M. L. Kuo, W. Den-besten, and C. J. Sherr, N-terminal polyubiquitination of the ARF tumor suppressor, a natural lysine-less protein . Cell Cycle, pp.1367-1369, 2004.

X. Chen, L. F. Barton, Y. Chi, B. E. Clurman, and J. M. Roberts, Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REG?? Proteasome, Molecular Cell, vol.26, issue.6, pp.843-852, 2007.
DOI : 10.1016/j.molcel.2007.05.022

X. Li, L. Amazit, W. Long, D. M. Lonard, J. J. Monaco et al., Ubiquitin- and ATP-Independent Proteolytic Turnover of p21 by the REG??-Proteasome Pathway, Molecular Cell, vol.26, issue.6, pp.831-842, 2007.
DOI : 10.1016/j.molcel.2007.05.028

M. Muschen, D. Re, B. Jungnickel, V. Diehl, K. Rajewsky et al., Somatic Mutation of the Cd95 Gene in Human B Cells as a Side-Effect of the Germinal Center Reaction, The Journal of Experimental Medicine, vol.60, issue.12, pp.1833-1840, 2000.
DOI : 10.1056/NEJM199911113412007

G. Gaidano, L. Pasqualucci, D. Capello, E. Berra, C. Deambrogi et al., Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma, Blood, vol.102, issue.5, pp.1833-1841, 2003.
DOI : 10.1182/blood-2002-11-3606

S. K. Petersen-mahrt, R. S. Harris, and M. S. Neuberger, AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification, Nature, vol.273, issue.6893, pp.99-103, 2002.
DOI : 10.1146/ANNUREV.GENET.24.1.579

A. Martin, P. D. Bardwell, C. J. Woo, M. Fan, M. J. Shulman et al., Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas, Nature, vol.38, issue.6873, pp.802-806, 2002.
DOI : 10.1038/nature714

A. R. Ramiro, P. Stavropoulos, M. Jankovic, and M. C. Nussenzweig, Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand, Nature Immunology, vol.4, issue.5, pp.452-456, 2003.
DOI : 10.1038/ni920

K. Yoshikawa, I. M. Okazaki, T. Eto, K. Kinoshita, M. Muramatsu et al., AID Enzyme-Induced Hypermutation in an Actively Transcribed Gene in Fibroblasts, Science, vol.296, issue.5575, pp.2033-2036, 2002.
DOI : 10.1126/science.1071556

J. Bachl, C. Carlson, V. Gray-schopfer, M. Dessing, and C. Olsson, Increased Transcription Levels Induce Higher Mutation Rates in a Hypermutating Cell Line, The Journal of Immunology, vol.166, issue.8, pp.5051-5057, 2001.
DOI : 10.4049/jimmunol.166.8.5051

S. H. Chen, G. Habib, C. Y. Yang, Z. W. Gu, B. R. Lee et al., Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon, Science, vol.238, issue.4825, pp.363-366, 1987.
DOI : 10.1126/science.3659919

M. S. Neuberger, R. S. Harris, J. D. Noia, and S. K. Petersen-mahrt, Immunity through DNA deamination, Trends in Biochemical Sciences, vol.28, issue.6, pp.305-312, 2003.
DOI : 10.1016/S0968-0004(03)00111-7

C. Rada, J. M. Jarvis, and C. Milstein, AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization, Proc. Natl. Acad. Sci. USA, pp.7003-7008, 2002.
DOI : 10.1073/pnas.092160999

S. Ito, H. Nagaoka, R. Shinkura, N. Begum, M. Muramatsu et al., Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1, Proc. Natl. Acad. Sci. USA, pp.1975-1980, 2004.
DOI : 10.1073/pnas.0307335101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC357037

K. M. Mcbride, V. Barreto, A. R. Ramiro, P. Stavropoulos, and M. C. Nussenzweig, Somatic Hypermutation Is Limited by CRM1-dependent Nuclear Export of Activation-induced Deaminase, The Journal of Experimental Medicine, vol.1171, issue.9, pp.1235-1244, 2004.
DOI : 10.1084/jem.194.3.365

S. S. Brar, M. Watson, and M. Diaz, Activation-induced Cytosine Deaminase (AID) Is Actively Exported out of the Nucleus but Retained by the Induction of DNA Breaks, Journal of Biological Chemistry, vol.279, issue.25, pp.26395-26401, 2004.
DOI : 10.1074/jbc.M403503200

G. Cattoretti, M. Buttner, R. Shaknovich, E. Kremmer, B. Alobeid et al., Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells, Blood, vol.107, issue.10, pp.3967-3975, 2006.
DOI : 10.1182/blood-2005-10-4170

R. Shinkura, S. Ito, N. A. Begum, H. Nagaoka, M. Muramatsu et al., Separate domains of AID are required for somatic hypermutation and class-switch recombination, Nature Immunology, vol.172, issue.7, pp.707-712, 2004.
DOI : 10.1073/PNAS.221454398

I. M. Okazaki, H. Hiai, N. Kakazu, S. Yamada, M. Muramatsu et al., Constitutive Expression of AID Leads to Tumorigenesis, The Journal of Experimental Medicine, vol.194, issue.9, pp.1173-1181, 2003.
DOI : 10.1016/S1097-2765(02)00742-6

A. R. Ramiro, M. Jankovic, T. Eisenreich, S. Difi-lippantonio, S. Chen-kiang et al., AID Is Required for c-myc/IgH Chromosome Translocations In Vivo, Cell, vol.118, issue.4, pp.431-438, 2004.
DOI : 10.1016/j.cell.2004.08.006

A. R. Ramiro, M. Jankovic, E. Callen, S. Difi-lippantonio, H. T. Chen et al., Role of genomic instability and p53 in AID-induced c-myc???Igh translocations, Nature, vol.99, issue.7080, pp.105-109, 2006.
DOI : 10.1038/nature04495

A. Kotani, N. Kakazu, T. Tsuruyama, I. M. Okazaki, M. Muramatsu et al., Activationinduced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice, Proc. Natl. Acad. Sci. USA, pp.1616-1620, 2007.

Y. Nambu, M. Sugai, H. Gonda, C. G. Lee, T. Katakai et al., Transcription-Coupled Events Associating with Immunoglobulin Switch Region Chromatin, Science, vol.302, issue.5653, pp.2137-2140, 2003.
DOI : 10.1126/science.1092481

F. Dedeoglu, B. Horwitz, J. Chaudhuri, F. W. Alt, and R. S. Geha, Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NF??B, International Immunology, vol.16, issue.3, pp.395-404, 2004.
DOI : 10.1093/intimm/dxh042

C. E. Schrader, E. K. Linehan, S. N. Mochegova, R. T. Woodland, and J. Stavnezer, Inducible DNA breaks in Ig S regions are dependent on AID and UNG, The Journal of Experimental Medicine, vol.16, issue.4, pp.561-568, 2005.
DOI : 10.1038/35041599

A. Faili, S. Aoufouchi, Q. Gueranger, C. Zober, A. Leon et al., AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line, Nature Immunology, vol.3, issue.9, pp.815-821, 2002.
DOI : 10.1038/ni826

H. M. Shen, A. Peters, B. Baron, X. Zhu, and U. Storb, Mutation of BCL-6 Gene in Normal B Cells by the Process of Somatic Hypermutation of Ig Genes, Science, vol.280, issue.5370, pp.1750-1752, 1998.
DOI : 10.1126/science.280.5370.1750

L. Pasqualucci, A. Migliazza, N. Fracchiolla, C. William, A. Neri et al., BCL-6 mutations in normal germinal center B cells: Evidence of somatic hypermutation acting outside Ig loci, Proc. Natl. Acad. Sci. USA, pp.11816-11821, 1998.
DOI : 10.1073/pnas.95.20.11816

M. Liu, J. L. Duke, D. J. Richter, C. G. Vinuesa, C. C. Goodnow et al., Two levels of protection for the B cell genome during somatic hypermutation, Nature, vol.102, issue.7180, pp.841-845, 2008.
DOI : 10.1038/nature06547

R. T. Phan and R. Dalla-favera, The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells, Nature, vol.82, issue.7017, pp.635-639, 2004.
DOI : 10.1038/ng1018

C. Gao, T. Nakajima, Y. Taya, and N. Tsuchida, Activation of p53 in MDM2-Overexpressing Cells through Phosphorylation, Biochemical and Biophysical Research Communications, vol.264, issue.3, pp.860-864, 1999.
DOI : 10.1006/bbrc.1999.1611

Y. Matsumoto, H. Marusawa, K. Kinoshita, Y. Endo, T. Kou et al., Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium, Nature Medicine, vol.290, issue.4, pp.470-476, 2007.
DOI : 10.1038/nm1566

V. T. Ta, H. Nagaoka, N. Catalan, A. Durandy, A. Fischer et al., AID mutant analyses indicate requirement for class-switch-specific cofactors, Nature Immunology, vol.4, issue.9, pp.843-848, 2003.
DOI : 10.1038/ni964

K. Imai, Y. Zhu, P. Revy, T. Morio, S. Mizutani et al., Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2, Clinical Immunology, vol.115, issue.3, pp.277-285, 2005.
DOI : 10.1016/j.clim.2005.02.003

. Muschen, Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1 ? transformed acute lymphoblastic leukemia cells, J. Exp. Med, vol.204, pp.1157-1166, 2007.

Y. Endo, H. Marusawa, K. Kinoshita, T. Morisawa, T. Sakurai et al., Expression of activation-induced cytidine deaminase in human hepatocytes via NF-??B signaling, Oncogene, vol.296, issue.38, pp.5587-5595, 2007.
DOI : 10.1038/sj.onc.1210344

K. M. Mcbride, A. Gazumyan, E. M. Woo, V. M. Barreto, D. F. Robbiani et al., Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation, Proc. Natl. Acad. Sci. USA, pp.8798-8803, 2006.
DOI : 10.1073/pnas.0603272103

U. Basu, J. Chaudhuri, C. Alpert, S. Dutt, S. Ranganath et al., The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation, Nature, vol.413, issue.7067, pp.508-511, 2005.
DOI : 10.1038/nature04255

K. Xue, C. Rada, and M. S. Neuberger, mice, The Journal of Experimental Medicine, vol.13, issue.9, pp.2085-2094, 2006.
DOI : 10.1073/pnas.0506548103

H. A. Coker and S. K. Petersen-mahrt, The nuclear DNA deaminase AID functions distributively whereas cytoplasmic APOBEC3G has a processive mode of action, DNA Repair, vol.6, issue.2, pp.235-243, 2007.
DOI : 10.1016/j.dnarep.2006.10.001