
  

  

Abstract— The CT uroscan contains three to four time-
spaced acquisitions of the same patient. Registration of these 
acquisitions forms a vectorial volume, which contains a more 
complete anatomical information. In order to outline the 
anatomical structures, multi-dimensional classification is 
necessary for analyzing this vectorial volume. Because of the 
partial volume effect (PVE), probability distributions are 
assigned to the different material types within this vectorial 
volume instead of a definite material distribution. Gaussian 
mixture model is often used in probability classification 
problems to model such distributions, but it relies only on the 
intensity distributions, which will lead a misclassification on the 
boundaries and inhomogeneous regions with noises. In order to 
solve this problem, a neighborhood weighted Gaussian mixture 
model is proposed in this paper. Expectation Maximization 
algorithm is used as optimization method. The experiments 
demonstrate that the proposed method can get a better 
classification result and less affected by the noise. 

I. INTRODUCTION 
HE CT uroscan is the classical preoperative examination 
for renal surgery. It consists of three to four time-spaced 

3D acquisitions at several contrast medium diffusion stages, 
which give complementary information about the kidney 
anatomy. Since information from these acquisitions is of a 
complementary nature, it is useful for the surgeon to 
integrate this information within a unique spatial volume. 
The first step in this integration process is to bring the 
different acquisitions into spatial alignment which has been 
done through a local mutual information maximization 
registration technique [1].  

After this registration process, we get a volume, in 
which each voxel contains a vector of n elements 
corresponding to the information of the CT uroscan 
acquisitions (n is equal to the number of acquisitions, three 
to four in our case). For analyzing this volume, a multi-
dimensional classification should be performed. 

Due to partial volume effect (PVE), the object boundary 
voxels’ values are usually the combination of two materials. 
Getting the material probabilities instead of assigning a 
definite material to the boundary voxels will be more 
conformable to the reality. Statistical classifiers have the 
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ability to get the probability distributions. Gaussian 
probability density functions are widely used to model the 
distribution of values within a dataset [2-4]. If K is the 
number of classes, we assumed that each voxel is composed 
by K component densities mixed together with K mixing 
coefficients. Each class density follows an n-dimensional 
Gaussian distribution, where n is equal to the number of 
elements in each voxel. 

Unfortunately, firstly these intensity classification 
methods rely only on the intensity distributions, which will 
lead to misclassification at the object boundaries. To 
understand misclassification, let us consider a situation 
where a dataset has three tissues A, B and C, with scalar 
values f(a), f(b) and f(c), respectively, such that f(a)< f(b)< 
f(c). Let us assume that the tissues A and C touch each other, 
chances are very high that the boundary between A and C is 
classified to B. In addition, the lack of information during 
classification will lead to sensitiveness to the noises in 
inhomogeneous regions. 

In order to solve the misclassification problem caused 
by intensity-only statistical classification methods, we 
proposed a neighborhood weighted solution. For analyzing a 
dataset, the information of neighborhood is also very 
important and the classification of the current voxel should 
take the neighborhood information into account. Based on 
this idea, a neighborhood weighted Gaussian mixture model 
is proposed in this paper.  

The rest of this paper is organized as follows. Section II 
reviews some relevant previous works. The proposed model 
is presented in detail in Section III. Experimental results are 
illustrated and discussed in Section IV. Finally, the 
conclusions are given in Section V. 

II. RELATED PREVIOUS WORKS 
Within the class of intensity-based classification methods, 
Gaussian mixture model was widely applied on MR image 
segmentation [2-4]. But all these methods were applied to a 
single image (or volume) where each element to be 
classified is a scalar. These Gaussian mixture based methods 
can be easily expanded to a multi-dimensional situation by 
applying a multi-dimensional Gaussian distribution instead 
of a scalar one. And the solutions are just a simple 
expanding solvent, as implemented in this paper. 

However, these intensity distribution based methods 
cannot solve the problem caused by PVE at the boundaries. 
S.A. Lakare [5] proposed a partial volume compensated 
classification method to solve this problem. When detecting 
a partial volume boundary, the author takes a compensated 
value instead of the sampled value. This method takes the 

A Vectorial Image Classification Method Based On Neighborhood 
Weighted Gaussian Mixture Model  

Hui Tang, Jean-Louis Dillenseger, and Li Min Luo 

T



  

PVE into classification process, but the classification result 
is still a definite decision at the partial volume boundary. 

In order to get the correct material distributions at the 
partial volume boundaries, we proposed to take the 
neighborhood information, which is an important content of 
a volume, into the classification process. 

Lunstrom et al.[6] proposed the Partial Range 
Histogram (PRH) concept, which is a way to describe the 
amount of a tissue within a local region. This gives us the 
hint to use this concept as a neighborhood descriptor. 
Inspired by this neighborhood description form, we propose 
a neighborhood weighted Gaussian mixture classification 
method with the purpose of getting a more accurate 
classification result. 

III. PROPOSED CLASSIFICATION METHOD 
In this section, the proposed method is presented. First, the 
general multi-dimensional Gaussian mixture model is 
described and solved by Expectation-Maximization (EM) 
algorithm. Then, the proposed neighborhood weighted 
method is described in detail. Based on this proposed model, 
the implemented algorithm is finally given.  

A. Multi-dimensional Gaussian mixture model 
For a joint-volume with N voxels, each voxel is a n-
dimensional vector. The voxel intensity vectors are denoted 
by ( 1,2, , )ix i N= . Recall that the goal is to estimate the 
class probabilities on each voxel according to the intensity 
vectors. The probability distribution of the kth tissue class is 
denoted by ( | )k kp x Θ , which is governed by a set of 
parameters kΘ . Given the parameters of all the classes, the 
probability distribution of each voxel can be described as a 
mixture of probability distributions as follows: 

1
( | ) ( | )

K

k k k
k

p x p xα
=

Θ = Θ∑                      (1) 
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Typically, ( | )k kp x Θ is modeled by a Gaussian 
distribution with mean kμ  and covariance matrix kΣ .  That 
is：  
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Maximum likelihood (ML) estimation is a common used 
method to find the probability distribution parameters. The 
log-likelihood expression for this density from the data X is 
given by: 
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Finding the ML solution directly from Eq. (3) is 
difficult because it contains the log of the sum. The EM 
algorithm is a good way to solve this problem [7]. The 
iterative solution for finding the parameters at the (t+1)th 
iteration step is as follows: 
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Taking the mixing parameters kα  as prior probabilities, 
the probability of each class can be computed using Bayes’ 
rule: 
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B. Modified model with neighborhood information 
Usually the material is continuous, so that it is natural to 
have the idea that for each voxel, the probability of the kth 
class should be affected by the neighbors’ kth class 
probabilities. According to this belief, Eq. (7) should be 
modified.  

Due to the deducing process of EM algorithm and the 
neighborhood idea, this probability should obey these rules: 
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2) Current voxel’s kth class probability magnifies if the 
neighbors’ kth class probabilities tend to 1; current voxel’s 
kth class probability decreases if the neighbors’ kth class 
probabilities tend to 0. 

Based on these two rules, we designed the neighborhood 
weighted probability for the current voxel: 
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iN  is a set of neighborhood of the ith voxel. iN  denotes 
the number of voxels in the set iN . nix  denotes the nth 
neighbor’s intensity of the ith voxel. 
 



  

C. Description of the algorithm 
Based on the discussions above, the estimation process we 
implemented is summarized as follows: 
Input: The vectorial volume ( 1,2, , )ix i N= , the number of 
classes K. 

Step 1: Initialization of 0Θ  and 0( | , )ip k x Θ . Any 
classification method could be used, in our case we choose 
K-means. 

Step 2: Using Eq. (9) to calculate the neighborhood 
weight for each voxel. 

Step 3: Calculate the prior probability by Eq. (8). 
Step 4: Compute the new parameter data according to 

Eqs. (4), (5) and (6). 
Step 5: Repeat steps 2-4 until reaching the end 

condition. 
For each element vector of the input volume, the aim is 

to find its class distributions. From the iteration process, we 
can see that this algorithm is not limited in applying on 
vectorial volume. According to the spatial dimension of the 
input series ( 1,2, , )ix i N= with N elements, denoted by D, 
the shape of the vectorial image to be classified can be a line 
(D=1), an image (D=2) or a volume (D=3). The difference is 
that the shape of iN  in Eq. (9) should match the dimension 
of the input series. Here, we only take the nearest neighbor 
into account with: D=1, iN =2; D=2, iN =8; D=3, 

iN =26.  

IV. EXPERIMENTS AND DISCUSSIONS 
Experiments were performed on both synthetic and real data.  

A. Evaluation on synthetic data 
In order to illustrate the effect of classification, we use 
images to test our algorithm instead of volumes. We create 
an image where each pixel is a three elements vector (n=3). 
Each channel of the vector forms an independent image. The 
three images can be seen in Fig. 2. Each channel image is 
composed by two homogeneous regions on which we add 
some Gaussian noise. The combination of these three 
channels leads to a vectorial image with six classes. 
According to the proposed algorithm described in Section 
3.3, the input number of classes K=6. 
 

 
Fig. 2: Synthetic data. Each image is one channel of the 
vectorial image. 

 
The classification on synthetic data is performed and the 

result is shown in Fig. 3. Each pixel of the result image is 
formed by this formula: 
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where ( )iC x  is the color assigned to the ith pixel and 

kC  is the color we assigned to the kth class.  
Fig. 3(a) is the classification result with the original 

Gaussian mixture model. We can notice that the final 
regions are not homogeneous as expected because of the 
noise. The reason is that the method relies only on the 
intensity distribution (histogram). The classification progress 
is a direct mapping from intensity to classes so that the noise 
cannot be removed. Fig. 3(b) is the result with our method. It 
is obvious to see that the regions are more homogeneous and 
the classification process is less affected by the noise. 

 

 
(a)                    (b) 

Fig. 3: Classification result of the synthetic data. (a): the 
Gaussian mixture method; (b): our method. 

 

B. Application on real data 
We performed the methods on real data obtained after the 
registration of three CT acquisitions. Fig. 4 shows one slice 
of the vectorial volume, which is composed by three 
channels: (a), acquisition before contrast medium injection; 
(b), immediately after injection; (c), ten minutes after 
injection. 
 

 
(a)            (b)             (c) 

Fig. 4: One slice of the kidney volume after registration 
 
With K=4, the classification result formed by Eq. (10) is 

shown in Fig. 5. It effectively demonstrates our conjecture. 
While taking the neighborhood information into account 
(Fig. 5(b)), the anatomical structures are better delineated 
into homogeneous regions: fat (red), renal cortex (green), 
renal medulla (blue) and collecting system (white). 
 



  

   
(a)               (b) 

Fig. 5: Classification result of the real data. (a): the Gaussian 
mixture method; (b): our method. 

 

C. Discussions 
From the above results, we can see that the Gaussian mixture 
model based method has the ability to classify vectorial 
image with the aim of outline the anatomical structures. 
Because of the in-homogeneity of the acquisitions and the 
partial volume effects, the result of the intensity-only 
method has some misclassification area, especially the renal 
cortex and the renal medulla because of their close intensity 
range as seen in Fig. 5(a). In order to illustrate clearer this 
phenomenon, the first order derivate of the result 
probabilities along one cut line is shown in Fig. 6(a). We can 
clearly see that the probabilities within the regions are not 
homogeneous.  
 

 
(a) 

 
(b) 

Fig. 6: Probabilities derivate along one cut line. (a): the 
Gaussian mixture method; (b): our method 
 

When take the neighborhood information into the 
iteration process, the results are promoted significantly, as 
shown in Fig. 5(b). The proposed method considers the 
intensity and the position of one pixel simultaneously so that 
it can give a more reasonable classification decision. While 
comparing Fig. 6(a) and (b), we can see that besides 
avoiding PVE, it also has the effect of less sensitive to 
inhomogeneous region, while giving a more correct 

classification decision. 
 

V.  CONCLUSIONS 
 
A neighborhood weighted Gaussian mixture classification 
method is proposed and experimented in this paper. The 
model is that the voxels’ intensity vectors follow the 
Gaussian mixture distribution and the classes distribution on 
each voxel is affected by its neighbors’ class probability 
distributions so that a weight is used to describe this 
property. The mixture parameters are found by EM 
algorithm. Experiments on both synthetic and real data show 
that this Gaussian mixture model improvement is less 
affected by noise and gives better classification results. 
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