M. Ljungman, Dial 9-1-1 for p53: Mechanisms of p53 Activation by Cellular Stress, Neoplasia, vol.2, issue.3, pp.208-225, 2000.
DOI : 10.1038/sj.neo.7900073

C. Brooks and W. Gu, ubiquitination: Mdm2 and beyond, Mol Cell, vol.21, issue.3, pp.53307-315, 2006.
DOI : 10.1016/j.molcel.2006.01.020

URL : http://doi.org/10.1016/j.molcel.2006.01.020

U. Moll, S. Wolff, D. Speidel, and W. Deppert, Transcription-independent pro-apoptotic functions of p53, Current Opinion in Cell Biology, vol.17, issue.6, pp.631-636, 2005.
DOI : 10.1016/j.ceb.2005.09.007

K. Vousden and X. Lu, Live or let die: the cell's response to p53, Nature Reviews Cancer, vol.2, issue.8, pp.594-604, 2002.
DOI : 10.1038/nrc864

C. Barlow, K. Brown, C. Deng, and D. Tagle, Wynshaw-Boris A: Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways
DOI : 10.1038/ng1297-453

A. Hirao, Y. Kong, S. Matsuoka, A. Wakeham, J. Ruland et al., DNA Damage-Induced Activation of p53 by the Checkpoint Kinase Chk2, Science, vol.287, issue.5459, pp.2871824-1827, 2000.
DOI : 10.1126/science.287.5459.1824

M. Nagashima, M. Shiseki, K. Miura, K. Hagiwara, S. Linke et al., DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53, Proceedings of the National Academy of Sciences, vol.98, issue.17, pp.989671-9676, 2001.
DOI : 10.1073/pnas.161151798

E. Flores, K. Tsai, D. Crowley, S. Sengupta, A. Yang et al., p63 and p73 are required for p53-dependent apoptosis in response to DNA damage, Nature, vol.416, issue.6880, pp.63-416560, 2002.
DOI : 10.1038/416560a

F. Murray-zmijewski, D. Lane, and J. Bourdon, p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress, Cell Death and Differentiation, vol.8, issue.6, pp.962-972, 2006.
DOI : 10.1038/sj.cdd.4401914

M. Brodsky, W. Nordstrom, G. Tsang, E. Kwan, G. Rubin et al., Drosophila p53 Binds a Damage Response Element at the reaper Locus, Cell, vol.101, issue.1, pp.103-113, 2000.
DOI : 10.1016/S0092-8674(00)80627-3

S. Jin, S. Martinek, W. Joo, J. Wortman, N. Mirkovic et al., Identification and characterization of a p53 homologue in Drosophila melanogaster, Proceedings of the National Academy of Sciences, vol.97, issue.13, pp.977301-7306, 2000.
DOI : 10.1073/pnas.97.13.7301

M. Ollmann, L. Young, D. Como, C. Karim, F. Belvin et al., Drosophila p53 Is a Structural and Functional Homolog of the Tumor Suppressor p53, Cell, vol.101, issue.1, pp.91-101, 2000.
DOI : 10.1016/S0092-8674(00)80626-1

J. Lee, E. Lee, J. Park, E. Kim, J. Kim et al., In vivo p53 function is indispensable for DNA damage-induced apoptotic signaling in Drosophila, FEBS Lett, vol.550, pp.1-35, 2003.

N. Sogame, M. Kim, and J. Abrams, Drosophila p53 preserves genomic stability by regulating cell death, Proceedings of the National Academy of Sciences, vol.100, issue.8, pp.4696-4701, 2003.
DOI : 10.1073/pnas.0736384100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153618

M. Yamaguchi, F. Hirose, Y. Inoue, M. Shiraki, Y. Hayashi et al., Ectopic expression of human p53 inhibits entry into S???phase and induces apoptosis in the Drosophila eye imaginal disc, Oncogene, vol.18, issue.48, pp.6767-6775, 1999.
DOI : 10.1038/sj.onc.1203113

F. Akdemir, A. Christich, N. Sogame, J. Chapo, and J. Abrams, p53 directs focused genomic responses in Drosophila, Oncogene, vol.408, issue.36, pp.535184-5193, 2007.
DOI : 10.1038/sj.onc.1210328

M. Brodsky, B. Weinert, G. Tsang, Y. Rong, N. Mcginnis et al., Drosophila melanogaster MNK/Chk2 and p53 Regulate Multiple DNA Repair and Apoptotic Pathways following DNA Damage, Molecular and Cellular Biology, vol.24, issue.3, pp.1219-1231, 2004.
DOI : 10.1128/MCB.24.3.1219-1231.2004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321428

M. Peters, C. Deluca, A. Hirao, V. Stambolic, J. Potter et al., Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.9911305-11310, 2002.
DOI : 10.1073/pnas.172382899

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC123252

G. Farmer, J. Colgan, Y. Nakatani, J. Manley, and C. Prives, Functional interaction between p53, the TATA-binding protein (TBP), andTBP-associated factors in vivo., Molecular and Cellular Biology, vol.16, issue.8, pp.164295-4304, 1996.
DOI : 10.1128/MCB.16.8.4295

H. Lu and A. Levine, Human TAFII31 protein is a transcriptional coactivator of the p53 protein., Proceedings of the National Academy of Sciences, vol.92, issue.11, pp.925154-5158, 1995.
DOI : 10.1073/pnas.92.11.5154

C. Thut, J. Chen, R. Klemm, and R. Tjian, p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60, Science, vol.267, issue.5194, pp.53100-104, 1995.
DOI : 10.1126/science.7809597

T. Buschmann, Y. Lin, N. Aithmitti, S. Fuchs, H. Lu et al., Stabilization and activation of p53 by the coactivator protein TAFII31, J Biol Chem, issue.17, pp.27613852-13857, 2001.

M. Frontini, E. Soutoglou, M. Argentini, C. Bole-feysot, B. Jost et al., TAF9b (Formerly TAF9L) Is a Bona Fide TAF That Has Unique and Overlapping Roles with TAF9, Molecular and Cellular Biology, vol.25, issue.11, pp.254638-4649, 2005.
DOI : 10.1128/MCB.25.11.4638-4649.2005

URL : https://hal.archives-ouvertes.fr/hal-00187538

N. Allende-vega, M. Saville, and D. Meek, Transcription factor TAFII250 promotes Mdm2-dependent turnover of p53, Oncogene, vol.114, issue.29, pp.4234-4242, 2007.
DOI : 10.1074/jbc.M102634200

H. Li, A. Li, H. Sheppard, and X. Liu, Phosphorylation on Thr-55 by TAF1 Mediates Degradation of p53, Molecular Cell, vol.13, issue.6, pp.867-878, 2004.
DOI : 10.1016/S1097-2765(04)00123-6

J. Pointud, J. Larsson, B. Dastugue, and J. Couderc, The BTB/POZ domain of the regulatory proteins Bric a brac 1, BAB1) and Bric a brac 2 (BAB2) interacts with the novel Drosophila TAF(II) factor BIP2/dTAF(II)155
URL : https://hal.archives-ouvertes.fr/inserm-00329458

Y. Gangloff, J. Pointud, S. Thuault, L. Carre, C. Romier et al., The TFIID Components Human TAFII140 and Drosophila BIP2 (TAFII155) Are Novel Metazoan Homologues of Yeast TAFII47 Containing a Histone Fold and a PHD Finger, Molecular and Cellular Biology, vol.21, issue.15, pp.5109-5121, 2001.
DOI : 10.1128/MCB.21.15.5109-5121.2001

J. Pointud, G. Mengus, S. Brancorsini, L. Monaco, M. Parvinen et al., The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation, Journal of Cell Science, vol.116, issue.9, pp.1161847-1858, 2003.
DOI : 10.1242/jcs.00391

M. Deato and R. Tjian, Switching of the core transcription machinery during myogenesis, Genes & Development, vol.21, issue.17, pp.2137-2149, 2007.
DOI : 10.1101/gad.1583407

L. Tora, A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription, Genes & Development, vol.16, issue.6, pp.673-675, 2002.
DOI : 10.1101/gad.976402

L. Bodai, N. Pardi, Z. Ujfaludi, O. Bereczki, O. Komonyi et al., Daxx-like Protein of Drosophila Interacts with Dmp53 and Affects Longevity and Ark mRNA Level, Journal of Biological Chemistry, vol.282, issue.50, pp.28236386-36393, 2007.
DOI : 10.1074/jbc.M705547200

M. Vermeulen, K. Mulder, S. Denissov, W. Pijnappel, F. Van-schaik et al., Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4, Cell, vol.131, issue.1, pp.58-69, 2007.
DOI : 10.1016/j.cell.2007.08.016

E. Soutoglou, M. Demeny, E. Scheer, G. Fienga, P. Sassone-corsi et al., The Nuclear Import of TAF10 Is Regulated by One of Its Three Histone Fold Domain-Containing Interaction Partners, Molecular and Cellular Biology, vol.25, issue.10, pp.254092-4104, 2005.
DOI : 10.1128/MCB.25.10.4092-4104.2005

URL : https://hal.archives-ouvertes.fr/hal-00187766

V. Chopra, A. Srinivasan, R. Kumar, K. Mishra, D. Basquin et al., Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3, Developmental Biology, vol.317, issue.2, 2008.
DOI : 10.1016/j.ydbio.2008.02.008

URL : http://doi.org/10.1016/j.ydbio.2008.02.008

F. Prince, T. Katsuyama, Y. Oshima, S. Plaza, D. Resendez-perez et al., The YPWM motif links Antennapedia to the basal transcriptional machinery, Development, vol.135, issue.9, pp.1669-1679, 2008.
DOI : 10.1242/dev.018028

URL : http://dev.biologists.org/cgi/content/short/135/9/1669

P. Hamard, R. Dalbies-tran, C. Hauss, I. Davidson, C. Kedinger et al., A functional interaction between ATF7 and TAF12 that is modulated by TAF4, Oncogene, vol.380, issue.21, pp.3472-3483, 2005.
DOI : 10.1038/sj.onc.1208565

URL : https://hal.archives-ouvertes.fr/hal-00187548

L. Coscoy and D. Ganem, PHD domains and E3 ubiquitin ligases: viruses make the connection, Trends in Cell Biology, vol.13, issue.1, pp.7-12, 2003.
DOI : 10.1016/S0962-8924(02)00005-3

L. Aravind, L. Iyer, and E. Koonin, Scores of RINGS but No PHDs in Ubiquitin Signaling, Cell Cycle, vol.2, issue.2, pp.123-126, 2003.
DOI : 10.4161/cc.2.2.335

H. Scheel and K. Hofmann, No evidence for PHD fingers as ubiquitin ligases, Trends in Cell Biology, vol.13, issue.6, pp.285-292, 2003.
DOI : 10.1016/S0962-8924(03)00102-8

L. Coscoy, D. Sanchez, and D. Ganem, A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition, The Journal of Cell Biology, vol.77, issue.7, pp.1265-1273, 2001.
DOI : 10.1083/jcb.200111010

Z. Lu, S. Xu, C. Joazeiro, M. Cobb, and T. Hunter, The PHD Domain of MEKK1 Acts as an E3 Ubiquitin Ligase and Mediates Ubiquitination and Degradation of ERK1/2, Molecular Cell, vol.9, issue.5, pp.945-956, 2002.
DOI : 10.1016/S1097-2765(02)00519-1

M. Mansouri, E. Bartee, K. Gouveia, H. Nerenberg, B. Barrett et al., The PHD/LAP-Domain Protein M153R of Myxomavirus Is a Ubiquitin Ligase That Induces the Rapid Internalization and Lysosomal Destruction of CD4, Journal of Virology, vol.77, issue.2, pp.1427-1440, 2003.
DOI : 10.1128/JVI.77.2.1427-1440.2003

D. Sanchez, L. Coscoy, and D. Ganem, Functional Organization of MIR2, a Novel Viral Regulator of Selective Endocytosis, Journal of Biological Chemistry, vol.277, issue.8, pp.6124-6130, 2002.
DOI : 10.1074/jbc.M110265200

A. Ivanov, H. Peng, V. Yurchenko, K. Yap, D. Negorev et al., PHD Domain-Mediated E3 Ligase Activity Directs Intramolecular Sumoylation of an Adjacent Bromodomain Required for Gene Silencing, Molecular Cell, vol.28, issue.5, pp.823-837, 2007.
DOI : 10.1016/j.molcel.2007.11.012

C. Leurent, S. Sanders, M. Demeny, K. Garbett, C. Ruhlmann et al., Mapping key functional sites within yeast TFIID Publish with Bio Med Central and every scientist can read your work free of chargeBioMed Central will be the most significant development for disseminating the results of biomedical researc h in our lifetime Sir Paul Nurse, Cancer Research UK Your research papers will be: available free of charge to the entire biomedical community peer reviewed and published immediately upon acceptance cited in PubMed and archived on PubMed Central yours ? you keep the copyright Submit your manuscript here, Embo Jasp BioMedcentral BMC Molecular Biology, vol.239, issue.9, pp.719-72757, 2004.

L. Breeden and K. Nasmyth, Regulation of the Yeast HO Gene, Cold Spring Harbor Symposia on Quantitative Biology, vol.50, issue.0, pp.643-650, 1985.
DOI : 10.1101/SQB.1985.050.01.078

S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.253389-3402, 1997.
DOI : 10.1093/nar/25.17.3389