Using a toroid transducer for thermal ablation by high-intensity-focused ultrasound increases the coagulated volume.

David Melodelima, William Apoutou N’Djin, Hubert Parmentier, Michel Rivoire, Jean-Yves Chapelon

To cite this version:

Using a toroid transducer for thermal ablation by high-intensity-focused ultrasound increases the coagulated volume

David Melodelima PhD\(^1\), William A. N'Djin\(^1\), Hubert Parmentier MD\(^1\), Michel Rivoire MD, PhD\(^1\)\(^2\) and Jean-Yves Chapelon PhD\(^1\)

Here, we report that a new design of High Intensity Focused Ultrasound transducer can significantly enlarge the coagulated volume over short periods of time, and that treatment in the liver can be guided in real-time using an integrated ultrasound imaging probe. Eight ultrasound emitters, divided into 256 elements, were created by sectioning a single toroid piezocomposite transducer. The focal zone was conical in shape and located 70 mm from the transducer, enabling the treatment of deep-seated tumors. A single thermal lesion was created when the eight emitters performed alternative and consecutive 5 s ultrasound exposures. This paper presents \textit{in vivo} evidence that the coagulated volume obtained from a 40 s total exposure in the liver was \(7.0 \pm 2.5 \text{ cm}^3\) (min 1.5 – max \(20.0 \text{ cm}^3\)). All lesions were visible with high contrast on sonograms. The correlation between the diameter of lesions observed on sonograms and during gross examination was 92%. This method also allowed the user to easily enlarge the coagulated volume by juxtaposing single lesions. This approach may have a role in treating unresectable colorectal liver metastases and may also be used in conjunction with resection to extend its limits.