L. Schols, P. Bauer, T. Schmidt, T. Schulte, and O. Riess, Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis, The Lancet Neurology, vol.3, issue.5, pp.291-304, 2004.
DOI : 10.1016/S1474-4422(04)00737-9

H. Orr, M. Chung, S. Banfi, T. Kwiatkowski, J. Servadio et al., Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1, Nature Genetics, vol.244, issue.3, pp.221-226, 1993.
DOI : 10.1038/359794a0

G. Imbert, F. Saudou, G. Yvert, D. Devys, Y. Trottier et al., Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats, Nature Genetics, vol.44, issue.3, pp.285-291, 1996.
DOI : 10.1006/dbio.1995.1226

K. Sanpei, H. Takano, S. Igarashi, T. Sato, M. Oyake et al., Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT, Nature Genetics, vol.4, issue.3, pp.277-284, 1996.
DOI : 10.1038/ng0695-213

Y. Kawaguchi, T. Okamoto, M. Taniwaki, M. Aizawa, I. Inoue et al., CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1, Nature Genetics, vol.21, issue.3, pp.221-227, 1994.
DOI : 10.1016/0092-8674(92)90082-N

O. Zhuchenko, J. Bailey, P. Bonnen, T. Ashizawa, D. Stockton et al., Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the ??1A-voltage-dependent calcium channel, Nature Genetics, vol.25, issue.1, pp.62-69, 1997.
DOI : 10.1038/ng0197-62

G. David, N. Abbas, G. Stevanin, A. Dürr, G. Yvert et al., Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion, Nature Genetics, vol.81, issue.1, pp.65-70, 1997.
DOI : 10.1016/0896-6273(95)90138-8

M. Koob, K. Benzow, T. Bird, J. Day, M. Moseley et al., Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA, Nature Genetics, vol.17, issue.1, pp.72-75, 1998.
DOI : 10.1038/ng0198-72

J. Del-favero, L. Krols, A. Michalik, J. Theuns, A. Löfgren et al., Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion, Human Molecular Genetics, vol.7, issue.2, pp.177-186, 1998.
DOI : 10.1093/hmg/7.2.177

R. Koide, S. Kobayashi, T. Shimohata, T. Ikeuchi, M. Maruyama et al., A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? [In Process Citation], Human Molecular Genetics, vol.8, issue.11, pp.2047-2053, 1999.
DOI : 10.1093/hmg/8.11.2047

R. Koide, T. Ikeuchi, O. Onodera, H. Tanaka, S. Igarashi et al., Unstable expansion of CAG repeat in hereditary dentatorubral???pallidoluysian atrophy (DRPLA), Nature Genetics, vol.4, issue.1, pp.9-13, 1994.
DOI : 10.1038/ng0893-398

S. Nagafuchi, H. Yanagisawa, K. Sato, T. Shirayama, E. Ohsaki et al., Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p, Nature Genetics, vol.7, issue.1, p.12
DOI : 10.1016/0378-1119(92)90514-P

G. Stevanin, Y. Trottier, G. Cancel, A. Dürr, G. David et al., Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias, Human Molecular Genetics, vol.5, issue.12, pp.1887-1892, 1996.
DOI : 10.1093/hmg/5.12.1887

A. Brusco, C. Gellera, C. Cagnoli, A. Saluto, A. Castucci et al., Molecular Genetics of Hereditary Spinocerebellar Ataxia, Archives of Neurology, vol.61, issue.5, pp.727-733, 2004.
DOI : 10.1001/archneur.61.5.727

M. Koob, M. Moseley, L. Schut, K. Benzow, T. Bird et al., An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8), Nature Genetics, vol.21, issue.4, pp.379-384, 1999.
DOI : 10.1038/7710

T. Matsuura, T. Yamagata, D. Burgess, A. Rasmussen, R. Grewal et al., Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10, Nature Genetics, vol.46, issue.2, pp.191-194, 2000.
DOI : 10.1093/hmg/6.11.1855

S. Holmes, O. Hearn, E. Mcinnis, M. Gorelick-feldman, D. Kleiderlein et al., Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12, Nat Genet, vol.23, pp.391-392, 1999.

J. Van-swieten, E. Brusse, B. De-graaf, E. Krieger, G. Van-de et al., A Mutation in the Fibroblast Growth Factor 14 Gene Is Associated with Autosomal Dominant Cerebral Ataxia, The American Journal of Human Genetics, vol.72, issue.1, pp.191-199, 2003.
DOI : 10.1086/345488

A. Dalski, J. Atici, F. Kreuz, Y. Hellenbroich, E. Schwinger et al., Mutation analysis in the fibroblast growth factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias, European Journal of Human Genetics, vol.13, issue.1, pp.118-120, 2005.
DOI : 10.1038/sj.ejhg.5201286

D. Chen, Z. Brkanac, C. Verlinde, X. Tan, L. Bylenok et al., Missense Mutations in the Regulatory Domain of PKC??: A New Mechanism for Dominant Nonepisodic Cerebellar Ataxia, The American Journal of Human Genetics, vol.72, issue.4, pp.839-849, 2003.
DOI : 10.1086/373883

G. Stevanin, V. Hahn, E. Lohmann, N. Bouslam, M. Gouttard et al., Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14, Arch Neurol, vol.61, pp.1242-1248, 2004.

B. Van-de-warrenburg, D. Verbeek, S. Piersma, F. Hennekam, P. Pearson et al., Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family, Neurology, vol.61, issue.12, pp.1760-1765, 2003.
DOI : 10.1212/01.WNL.0000098883.79421.73

I. Yabe, H. Sasaki, D. Chen, W. Raskind, T. Bird et al., Spinocerebellar Ataxia Type 14 Caused by a Mutation in Protein Kinase C ??, Archives of Neurology, vol.60, issue.12, pp.1749-1751, 2003.
DOI : 10.1001/archneur.60.12.1749

D. Verbeek, M. Knight, G. Harmison, K. Fischbeck, and B. Howell, Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting, Brain, vol.128, issue.2, pp.436-442, 2005.
DOI : 10.1093/brain/awh378

D. Chen, P. Cimino, L. Ranum, H. Zoghbi, I. Yabe et al., The clinical and genetic spectrum of spinocerebellar ataxia 14, Neurology, vol.64, issue.7, pp.1258-1260, 2005.
DOI : 10.1212/01.WNL.0000156801.64549.6B

S. Klebe, A. Durr, A. Rentschler, V. Hahn-barma, M. Abele et al., New mutations of Protein Kinase Cã associated with Spinocerebellar Ataxia Type 14 (SCA14), Ann Neurol, 2005.

T. Seki, N. Adachi, Y. Ono, H. Mochizuki, K. Hiramoto et al., Mutant protein kinase C gamma found in spinocerebellar ataxia type 14 is susceptible to aggregate and cause cell death, J Biol Chem, 2005.

Y. Ikeda, K. Dick, M. Weatherspoon, D. Gincel, K. Armbrust et al., Spectrin mutations cause spinocerebellar ataxia type 5, Nature Genetics, vol.86, issue.2, pp.184-190, 2006.
DOI : 10.1038/ng1728

M. Waters, N. Minassian, G. Stevanin, K. Figueroa, J. Bannister et al., Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes, Nature Genetics, vol.273, issue.4, pp.447-451, 2006.
DOI : 10.1038/ng1758

K. Ishikawa, S. Toru, T. Tsunemi, M. Li, K. Kobayashi et al., An Autosomal Dominant Cerebellar Ataxia Linked to Chromosome 16q22.1 Is Associated with a Single-Nucleotide Substitution in the 5??? Untranslated Region of the Gene Encoding a Protein with Spectrin Repeat and Rho Guanine-Nucleotide Exchange-Factor Domains, The American Journal of Human Genetics, vol.77, issue.2, pp.280-296, 2005.
DOI : 10.1086/432518

H. Zoghbi and H. Orr, Glutamine Repeats and Neurodegeneration, Annual Review of Neuroscience, vol.23, issue.1, pp.217-247, 2000.
DOI : 10.1146/annurev.neuro.23.1.217

C. Zuhlke, Y. Hellenbroich, A. Dalski, N. Kononowa, J. Hagenah et al., Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia, European Journal of Human Genetics, vol.9, issue.3, pp.160-164, 2001.
DOI : 10.1038/sj.ejhg.5200617

K. Nakamura, S. Jeong, T. Uchihara, M. Anno, K. Nagashima et al., SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein, Human Molecular Genetics, vol.10, issue.14, pp.1441-1448, 2001.
DOI : 10.1093/hmg/10.14.1441

H. Fujigasaki, J. Martin, D. Deyn, P. Camuzat, A. Deffond et al., CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia, Brain, vol.124, issue.10, pp.1939-1947, 2001.
DOI : 10.1093/brain/124.10.1939

G. Stevanin, H. Fujigasaki, A. Lebre, A. Camuzat, C. Jeannequin et al., Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes, Brain, vol.126, issue.7, pp.1599-1603, 2003.
DOI : 10.1093/brain/awg155

Y. Wu, H. Fung, G. Lee-chen, K. Gwinn-hardy, L. Ro et al., Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases, Journal of Neural Transmission, vol.112, issue.4, pp.539-546, 2005.
DOI : 10.1007/s00702-004-0197-9

M. Oda, H. Maruyama, O. Komure, H. Morino, H. Terasawa et al., Possible Reduced Penetrance of Expansion of 44 to 47 CAG/CAA Repeats in the TATA-Binding Protein Gene in Spinocerebellar Ataxia Type 17, Archives of Neurology, vol.61, issue.2, pp.209-212, 2004.
DOI : 10.1001/archneur.61.2.209

P. Rigby, Three in one and one in three: It all depends on TBP, Cell, vol.72, issue.1, pp.7-10, 1993.
DOI : 10.1016/0092-8674(93)90042-O

G. Imbert, Y. Trottier, J. Beckmann, and J. Mandel, The Gene for the TATA Binding Protein (TBP) That Contains a Highly Polymorphic Protein Coding CAG Repeat Maps to 6q27, Genomics, vol.21, issue.3, pp.667-668, 1994.
DOI : 10.1006/geno.1994.1335

A. Lescure, Y. Lutz, D. Eberhard, X. Jacq, A. Krol et al., The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters, EMBO J, vol.13, pp.1166-1175, 1994.

H. Gerber, K. Seipel, O. Georgiev, M. Hofferer, M. Hug et al., Transcriptional activation modulated by homopolymeric glutamine and proline stretches, Science, vol.263, issue.5148, pp.808-811, 1994.
DOI : 10.1126/science.8303297

B. Gostout, Q. Liu, and S. Sommer, Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes, Am J Hum Genet, vol.52, pp.1182-1190, 1993.

S. Reid, M. Rees, W. Roon-mom, A. Jones, M. Macdonald et al., Molecular investigation of TBP allele length:, Neurobiology of Disease, vol.13, issue.1, pp.37-45, 2003.
DOI : 10.1016/S0969-9961(03)00014-7

D. Rubinsztein, J. Leggo, T. Crow, L. Delisi, C. Walsh et al., Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations, pp.7-11

E. Cellini, P. Forleo, B. Nacmias, A. Tedde, S. Bagnoli et al., Spinocerebellar ataxia type 17 repeat in patients with Huntington's disease-like and ataxia, Annals of Neurology, vol.250, issue.1, pp.163-164, 2004.
DOI : 10.1002/ana.20146

I. Silveira, C. Miranda, L. Guimaraes, M. Moreira, A. I. Mendonca et al., Trinucleotide Repeats in 202 Families With Ataxia, Archives of Neurology, vol.59, issue.4, pp.623-629, 2002.
DOI : 10.1001/archneur.59.4.623

A. Rolfs, A. Koeppen, I. Bauer, P. Bauer, S. Buhlmann et al., Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17), Annals of Neurology, vol.125, issue.3, pp.367-375, 2003.
DOI : 10.1002/ana.10676

P. Bauer, F. Laccone, A. Rolfs, U. Wullner, S. Bosch et al., Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington's disease-like phenotype, Journal of Medical Genetics, vol.41, issue.3, pp.230-232, 2004.
DOI : 10.1136/jmg.2003.015602

Y. Toyoshima, M. Yamada, O. Onodera, M. Shimohata, C. Inenaga et al., SCA17 homozygote showing Huntington's disease-like phenotype, Annals of Neurology, vol.65, issue.2, pp.281-286, 2004.
DOI : 10.1002/ana.10824

Y. Wu, H. Lin, C. Chen, K. Gwinn-hardy, L. Ro et al., Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease, Clinical Genetics, vol.56, issue.3, pp.209-214, 2004.
DOI : 10.1111/j.0009-9163.2004.00213.x

C. Zuhlke, A. Dalski, E. Schwinger, and U. Finckh, Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln49TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes, BMC Medical Genetics, vol.55, issue.1, p.27, 2005.
DOI : 10.1002/ana.10824

G. De-michele, F. Maltecca, M. Carella, G. Volpe, M. Orio et al., Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17, Neurological Sciences, vol.24, issue.3, pp.166-167, 2003.
DOI : 10.1007/s10072-003-0112-4

C. Zuhlke, U. Gehlken, Y. Hellenbroich, E. Schwinger, and K. Burk, Phenotypical variability of expanded alleles in the TATA-binding protein gene. Reduced penetrance in SCA17?, J Neurol, vol.250, pp.161-163, 2003.

C. Zuhlke, M. Spranger, S. Spranger, R. Voigt, M. Lanz et al., SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6, European Journal of Human Genetics, vol.11, issue.8, pp.629-632, 2003.
DOI : 10.1038/sj.ejhg.5201018

F. Maltecca, A. Filla, I. Castaldo, G. Coppola, N. Fragassi et al., Intergenerational instability and marked anticipation in SCA-17, Neurology, vol.61, issue.10, pp.1441-1443, 2003.
DOI : 10.1212/01.WNL.0000094123.09098.A0

A. Shatunov, E. Fridman, F. Pagan, J. Leib, A. Singleton et al., Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease, Clinical Genetics, vol.59, issue.6, pp.496-501, 2004.
DOI : 10.1111/j.1399-0004.2004.00356.x

A. Bruni, J. Takahashi-fujigasaki, F. Maltecca, J. Foncin, A. Servadio et al., Behavioral Disorder, Dementia, Ataxia, and Rigidity in a Large Family With TATA Box-Binding Protein Mutation, Archives of Neurology, vol.61, issue.8, pp.1314-1320, 2004.
DOI : 10.1001/archneur.61.8.1314

R. Myers, M. Macdonald, W. Koroshetz, M. Duyao, C. Ambrose et al., De novo expansion of a (CAG)n repeat in sporadic Huntington's disease, Nature Genetics, vol.17, issue.2, pp.168-173, 1993.
DOI : 10.1038/ng1093-168

G. Stevanin, P. Giunti, G. Belal, A. Durr, M. Ruberg et al., De Novo Expansion of Intermediate Alleles in Spinocerebellar Ataxia 7, Human Molecular Genetics, vol.7, issue.11, pp.1809-1813, 1998.
DOI : 10.1093/hmg/7.11.1809

U. Mittal, S. Roy, S. Jain, A. Srivastava, and M. Mukerji, Post-zygotic de novo trinucleotide repeat expansion at spinocerebellar ataxia type 7 locus: evidence from an Indian family, Journal of Human Genetics, vol.4, issue.3, 2005.
DOI : 10.1007/s10038-005-0233-0

P. Giunti, G. Stevanin, P. Worth, G. David, A. Brice et al., Molecular and Clinical Study of 18 Families with ADCA Type II: Evidence for Genetic Heterogeneity and De Novo Mutation, The American Journal of Human Genetics, vol.64, issue.6
DOI : 10.1086/302406

M. Shizuka, M. Watanabe, Y. Ikeda, K. Mizushima, K. Okamoto et al., Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls, Journal of the Neurological Sciences, vol.161, issue.1, pp.85-87, 1998.
DOI : 10.1016/S0022-510X(98)00270-6

M. Watanabe, A. Satoh, M. Kanemoto, N. Ohkoshi, and S. Shoji, De novo expansion of a CAG repeat in a Japanese patient with sporadic Huntington???s disease, Journal of the Neurological Sciences, vol.178, issue.2, pp.159-162, 2000.
DOI : 10.1016/S0022-510X(00)00368-3

L. Schols, S. Gispert, M. Vorgerd, M. Vieira-saecker, A. Blanke et al., Spinocerebellar Ataxia Type 2, Archives of Neurology, vol.54, issue.9, pp.1073-1080, 1997.
DOI : 10.1001/archneur.1997.00550210011007

P. Bauer, J. Kraus, V. Matoska, M. Brouckova, A. Zumrova et al., Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7, Journal of Neurology, vol.251, issue.8, pp.1023-1024, 2004.
DOI : 10.1007/s00415-004-0482-4

H. Maruyama, Y. Izumi, H. Morino, M. Oda, H. Toji et al., Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: A study of 1,286 Japanese patients, American Journal of Medical Genetics, vol.15, issue.5, pp.578-583, 2002.
DOI : 10.1002/ajmg.10514

J. Hagenah, C. Zuhlke, Y. Hellenbroich, H. W. Klein, and C. , Focal dystonia as a presenting sign of spinocerebellar ataxia 17, Movement Disorders, vol.8, issue.2, pp.217-220, 2004.
DOI : 10.1002/mds.10600

F. Manganelli, A. Perretti, M. Nolano, B. Lanzillo, A. Bruni et al., Electrophysiologic characterization in spinocerebellar ataxia 17, Neurology, vol.66, issue.6, pp.932-934, 2006.
DOI : 10.1212/01.wnl.0000203514.92781.fd

K. Craig, S. Keers, T. Walls, A. Curtis, and P. Chinnery, Minimum prevalence of spinocerebellar ataxia 17 in the north east of England, Journal of the Neurological Sciences, vol.239, issue.1, pp.105-109, 2005.
DOI : 10.1016/j.jns.2005.08.009

A. Alendar, B. Euljkovic, D. Savic, A. Djarmati, M. Keckarevic et al., Spinocerebellar ataxia type 17 in the Yugoslav population, Acta Neurologica Scandinavica, vol.58, issue.3, pp.185-187, 2004.
DOI : 10.1086/302067

M. Costa, A. Teixeira-castro, M. Constante, M. Magalhaes, P. Magalhaes et al., Exclusion of mutations in the PRNP, JPH3, TBP, ATN1, CREBBP, POU3F2 and FTL genes as a cause of disease in Portuguese patients with a Huntington-like phenotype, Journal of Human Genetics, vol.63, issue.8, pp.645-651, 2006.
DOI : 10.1007/s10038-006-0001-9

A. Seixas, M. Maurer, M. Lin, C. Callahan, A. Ahuja et al., FXTAS, SCA10, and SCA17 in American patients with movement disorders, American Journal of Medical Genetics Part A, vol.251, issue.1, pp.87-89, 2005.
DOI : 10.1002/ajmg.a.30761

A. Filla, D. Michele, G. Cocozza, S. Patrignani, A. Volpe et al., Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy, Neurology, vol.58, issue.6, pp.922-928, 2002.
DOI : 10.1212/WNL.58.6.922

I. Lin, R. Wu, G. Lee-chen, D. Shan, and K. Gwinn-hardy, The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment, Parkinsonism & Related Disorders, vol.13, issue.4, 2006.
DOI : 10.1016/j.parkreldis.2006.04.009

G. Lee-chen, H. Lane, C. Chen, Y. Wu, L. Ro et al., Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia, Schizophr Res, 2005.

D. Hernandez, M. Hanson, A. Singleton, K. Gwinn-hardy, J. Freeman et al., Mutation at the SCA17 locus is not a common cause of parkinsonism, Parkinsonism & Related Disorders, vol.9, issue.6, pp.317-320, 2003.
DOI : 10.1016/S1353-8020(03)00027-0

K. Grundmann, U. Laubis-herrmann, D. Dressler, J. Vollmer-haase, P. Bauer et al., Mutation at the SCA17 locus is not a common cause of primary dystonia, Journal of Neurology, vol.9, issue.10, pp.1232-1234, 2004.
DOI : 10.1007/s00415-004-0520-2

C. Loy, M. Sweeney, M. Davis, A. Wills, G. Sawle et al., Spinocerebellar ataxia type 17: Extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging, Movement Disorders, vol.65, issue.11, pp.1521-1523, 2005.
DOI : 10.1002/mds.20529

M. Minnerop, A. Joe, M. Lutz, P. Bauer, H. Urbach et al., Putamen dopamine transporter and glucose metabolism are reduced in SCA17, Annals of Neurology, vol.57, issue.3, pp.490-491, 2005.
DOI : 10.1002/ana.20609

G. Stevanin, A. Durr, and A. Brice, Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology, European Journal of Human Genetics, vol.8, issue.1, pp.4-18, 2000.
DOI : 10.1038/sj.ejhg.5200403

K. Sato, K. Kashihara, S. Okada, T. Ikeuchi, S. Tsuji et al., Does homozygosity advance the onset of dentatorubral-pallidoluysian atrophy?, Neurology, vol.45, issue.10, pp.1934-1936, 1995.
DOI : 10.1212/WNL.45.10.1934

G. Sobue, M. Doyu, N. Nakao, N. Shimada, T. Mitsuma et al., Homozygosity for Machado-Joseph disease gene enhances phenotypic severity., Journal of Neurology, Neurosurgery & Psychiatry, vol.60, issue.3, pp.354-356, 1996.
DOI : 10.1136/jnnp.60.3.354-a

T. Ikeuchi, H. Takano, R. Koide, Y. Horikawa, Y. Honma et al., Spinocerebellar ataxia type 6: CAG repeat expansion in ?1a voltage-dependent calcium channel gene and clinical variations in japanese population, Annals of Neurology, vol.72, issue.6, pp.879-884, 1997.
DOI : 10.1002/ana.410420609

F. Squitieri, C. Gellera, M. Cannella, C. Mariotti, G. Cislaghi et al., Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course, Brain, vol.126, issue.4, pp.946-955, 2003.
DOI : 10.1093/brain/awg077

Y. Trottier, Y. Lutz, G. Stevanin, G. Imbert, D. Devys et al., Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias, Nature, vol.378, issue.6555, pp.403-406, 1995.
DOI : 10.1038/378403a0

I. Martianov, S. Viville, and I. Davidson, RNA Polymerase II Transcription in Murine Cells Lacking the TATA Binding Protein, Science, vol.298, issue.5595, pp.1036-1039, 2002.
DOI : 10.1126/science.1076327

T. Uchihara, H. Fujigasaki, S. Koyano, A. Nakamura, S. Yagishita et al., Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immunofluorescence study, Acta Neuropathol (Berl), vol.102, pp.149-152, 2001.

W. Roon-mom, S. Reid, A. Jones, M. Macdonald, R. Faull et al., Insoluble TATA-binding protein accumulation in Huntington???s disease cortex, Molecular Brain Research, vol.109, issue.1-2, pp.1-10, 2002.
DOI : 10.1016/S0169-328X(02)00450-3

M. Perez, H. Paulson, S. Pendse, S. Saionz, N. Bonini et al., Recruitment and the Role of Nuclear Localization in Polyglutamine-mediated Aggregation, The Journal of Cell Biology, vol.44, issue.6, pp.1457-1470, 1998.
DOI : 10.1002/ana.410190207