W. N. Qin, Z. Khuchua, J. Boero, R. M. Payne, and A. W. Strauss, Oxidative myocytes of heart and skeletal muscle express abundant sarcomeric mitochondrial creatine kinase, Histochemical Journal Histochem J, pp.31-357, 1999.

R. Ventura-clapier, A. Kuznetsov, V. Veksler, E. Boehm, and K. Anflous, Functional coupling of creatine kinases in muscles: Species and tissue specificity, Molecular and Cellular Biochemistry, vol.184, issue.1/2, pp.231-247, 1998.
DOI : 10.1023/A:1006840508139

J. Van-deursen, A. Heerschap, F. Oerlemans, W. Ruitenbeek, P. Jap et al., Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity, Cell, vol.74, issue.4, pp.621-631, 1993.
DOI : 10.1016/0092-8674(93)90510-W

M. Gorselink, M. R. Drost, W. A. Coumans, G. P. Van-kranenburg, R. P. Hesselink et al., Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice, Am J Physiol Endocrinol Metab, vol.281, pp.619-625, 2001.

A. J. Dahlstedt and H. Westerblad, in mouse skeletal muscle, The Journal of Physiology, vol.415, issue.3, pp.639-688, 2001.
DOI : 10.1111/j.1469-7793.2001.00639.x

V. I. Veksler, A. V. Kuznetsov, K. Anflous, P. Mateo, J. Van-deursen et al., Muscle Creatine Kinase-deficient Mice: II. CARDIAC AND SKELETAL MUSCLES EXHIBIT TISSUE-SPECIFIC ADAPTATION OF THE MITOCHONDRIAL FUNCTION, Journal of Biological Chemistry, vol.270, issue.34, 1995.
DOI : 10.1074/jbc.270.34.19921

A. Kaasik, V. Veksler, E. Boehm, M. Novotova, and R. Ventura-clapier, From energy store to energy channeling: a study in creatine kinase deficient fast skeletal

T. Akimoto, S. C. Pohnert, P. Li, M. Zhang, C. Gumbs et al., Exercise Stimulates Pgc-1?? Transcription in Skeletal Muscle through Activation of the p38 MAPK Pathway, Journal of Biological Chemistry, vol.280, issue.20, pp.19587-19593, 2005.
DOI : 10.1074/jbc.M408862200

H. Wu, S. B. Kanatous, F. A. Thurmond, T. Gallardo, E. Isotani et al., Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK, Science, vol.296, issue.5566, pp.349-352, 2002.
DOI : 10.1126/science.1071163

R. Bergeron, J. M. Ren, K. S. Cadman, I. K. Moore, P. Perret et al., Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis, Am J Physiol, vol.281, pp.1340-1346, 2001.

H. Zong, J. M. Ren, L. H. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.99-15983, 2002.
DOI : 10.1073/pnas.252625599

S. B. Jorgensen, J. F. Wojtaszewski, B. Viollet, F. Andreelli, J. B. Birk et al., Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle, FASEB J, vol.19, pp.1146-1148, 2005.

A. Garnier, D. Fortin, C. Delomenie, I. Momken, V. Veksler et al., Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles, The Journal of Physiology, vol.94, issue.(suppl. VII), pp.551-491, 2003.
DOI : 10.1113/jphysiol.2003.045104

Y. S. Choi, H. K. Lee, and Y. K. Pak, Characterization of the 5???-flanking region of the rat gene for mitochondrial transcription factor A (Tfam), Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1574, issue.2, pp.1574-200, 2002.
DOI : 10.1016/S0167-4781(01)00361-X

P. Puigserver, Z. Wu, C. W. Park, R. Graves, M. Wright et al., A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis, Cell, vol.92, issue.6, pp.829-839, 1998.
DOI : 10.1016/S0092-8674(00)81410-5

Y. X. Wang, C. L. Zhang, R. T. Yu, H. K. Cho, M. C. Nelson et al., Regulation of Muscle Fiber Type and Running Endurance by PPAR??, PLoS Biology, vol.98, issue.10, p.294, 2004.
DOI : 10.1371/journal.pbio.0020294.sv002

H. Wu, F. J. Naya, T. A. Mckinsey, B. Mercer, J. M. Shelton et al., MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type, The EMBO Journal, vol.19, issue.9, pp.1963-1973, 2000.
DOI : 10.1093/emboj/19.9.1963

A. Kaasik, V. Veksler, E. Boehm, M. Novotova, A. Minajeva et al., Energetic Crosstalk Between Organelles: Architectural Integration of Energy Production and Utilization, Circulation Research, vol.89, issue.2, pp.153-159, 2001.
DOI : 10.1161/hh1401.093440

F. Ter-veld, J. A. Jeneson, and K. Nicolay, Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis, FEBS J, pp.272-956, 2005.

I. Momken, P. Lechene, N. Koulmann, D. Fortin, P. Mateo et al., Impaired voluntary running capacity of creatine kinase-deficient mice, The Journal of Physiology, vol.194, issue.257, pp.565-951, 2005.
DOI : 10.1113/jphysiol.2005.086397

URL : https://hal.archives-ouvertes.fr/inserm-00290115

R. C. Scarpulla, Nuclear activators and coactivators in mammalian mitochondrial biogenesis, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1576, issue.1-2, pp.1-14, 2002.
DOI : 10.1016/S0167-4781(02)00343-3

P. Puigserver and B. M. Spiegelman, Peroxisome Proliferator-Activated Receptor-?? Coactivator 1?? (PGC-1??): Transcriptional Coactivator and Metabolic Regulator, Endocrine Reviews, vol.24, issue.1, pp.78-90, 2003.
DOI : 10.1210/er.2002-0012

Z. Arany, H. He, J. Lin, K. Hoyer, C. Handschin et al., Transcriptional coactivator PGC-1?? controls the energy state and contractile function of cardiac muscle, Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle, pp.259-271, 2005.
DOI : 10.1016/j.cmet.2005.03.002

T. C. Leone, J. J. Lehman, B. N. Finck, P. J. Schaeffer, A. R. Wende et al., PGC-1?? Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis, PLoS Biology, vol.277, issue.4, p.101, 2005.
DOI : 10.1371/journal.pbio.0030101.st001

URL : http://doi.org/10.1371/journal.pbio.0030101

J. Lin, C. Handschin, and B. M. Spiegelman, Metabolic control through the PGC-1 family of transcription coactivators, Cell Metabolism, vol.1, issue.6, pp.361-370, 2005.
DOI : 10.1016/j.cmet.2005.05.004

S. Luquet, J. Lopez-soriano, D. Holst, A. Fredenrich, J. Melki et al., Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability, pp.17-2299, 2003.
DOI : 10.1096/fj.03-0269fje

P. Puigserver, J. Rhee, J. Lin, Z. Wu, J. C. Yoon et al., Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPAR?? Coactivator-1, Molecular Cell, vol.8, issue.5, pp.971-982, 2001.
DOI : 10.1016/S1097-2765(01)00390-2

M. Fan, J. Rhee, J. St-pierre, C. Handschin, P. Puigserver et al., Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1??: modulation by p38 MAPK, Genes & Development, vol.18, issue.3, pp.278-289, 2004.
DOI : 10.1101/gad.1152204

S. B. Jorgensen, E. A. Richter, and J. F. Wojtaszewski, Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise, The Journal of Physiology, vol.99, issue.Suppl. 2, pp.17-31, 2006.
DOI : 10.1113/jphysiol.2006.109942

P. J. Atherton, J. Babraj, K. Smith, J. Singh, M. J. Rennie et al., Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation, FASEB J, pp.19-786, 2005.

S. Jager, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12022, 2007.
DOI : 10.1073/pnas.0705070104

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase, Cell Metabolism, vol.5, issue.6, pp.476-487, 2007.
DOI : 10.1016/j.cmet.2007.05.006