D. Allen, B. Harrison, A. Maass, M. Bell, W. Byrnes et al., Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse, J Appl Physiol, vol.90, pp.1900-1908, 2001.

J. Barbato, L. Koch, A. Darvish, G. Cicila, P. Metting et al., Spectrum of aerobic endurance running performance in eleven inbred strains of rats, J Appl Physiol, vol.85, pp.530-536, 1998.

A. Bigard, E. Boehm, V. Veksler, P. Mateo, K. Anflous et al., Muscle Unloading Induces Slow to Fast Transitions in Myofibrillar but not Mitochondrial Properties. Relevance to Skeletal Muscle Abnormalities in Heart Failure, Journal of Molecular and Cellular Cardiology, vol.30, issue.11, pp.2391-2401, 1998.
DOI : 10.1006/jmcc.1998.0798

A. Bigard, P. Mateo, H. Sanchez, B. Serrurier, and R. Ventura-clapier, Lack of coordinated changes in metabolic enzymes and myosin heavy chain isoforms in regenerated muscles of trained rats, Journal of Muscle Research and Cell Motility, vol.21, issue.3, pp.269-278, 2000.
DOI : 10.1023/A:1005680921792

E. Boehm, R. Ventura-clapier, P. Mateo, P. Lechene, and V. Veksler, Glycolysis Supports Calcium Uptake by the Sarcoplasmic Reticulum in Skinned Ventricular Fibres of Mice Deficient in Mitochondrial and Cytosolic Creatine Kinase, Journal of Molecular and Cellular Cardiology, vol.32, issue.6, pp.891-902, 2000.
DOI : 10.1006/jmcc.2000.1130

A. Bonz, S. Kniesch, U. Hofmann, S. Kullmer, L. Bauer et al., Functional properties and [Ca2+]i metabolism of creatine kinase???KO mice myocardium, Biochemical and Biophysical Research Communications, vol.298, issue.1, pp.163-168, 2002.
DOI : 10.1016/S0006-291X(02)02402-6

J. Bruton, A. Dahlstedt, F. Abbate, and H. Westerblad, Mitochondrial function in intact skeletal muscle fibres of creatine kinase deficient mice, The Journal of Physiology, vol.552, issue.2, pp.393-402, 2003.
DOI : 10.1113/jphysiol.2003.050732

B. Crozatier, T. Badoual, E. Boehm, P. Ennezat, T. Guenoun et al., Role of creatine kinase in cardiac excitation-contraction coupling: studies in creatine kinase-deficient mice, The FASEB Journal, vol.16, issue.7, pp.653-660, 2002.
DOI : 10.1096/fj.01-0652com

A. Dahlstedt, A. Katz, B. Wieringa, and H. Westerblad, Is creatine kinase responsible for fatigue? Studies of isolated skeletal muscle deficient in creatine kinase, FASEB J, vol.14, pp.982-990, 2000.

A. De-groof, F. Oerlemans, C. Jost, and B. Wieringa, Changes in glycolytic network and mitochondrial design in creatine kinase-deficient muscles, Muscle & Nerve, vol.260, issue.9, pp.1188-1196, 2001.
DOI : 10.1002/mus.1131

A. De-groof, B. Smeets, G. Koerkamp, M. Mul, A. Janssen et al., Changes in mRNA expression profile underlie phenotypic adaptations in creatine kinase-deficient muscles, FEBS Letters, vol.404, issue.1, pp.73-78, 2001.
DOI : 10.1016/S0014-5793(01)02879-4

D. Sousa, E. Lechene, P. Fortin, D. , N. 'guessan et al., Cardiac and skeletal muscle energy metabolism in heart failure: beneficial effects of voluntary activity, Cardiovasc Res, vol.56, pp.260-268, 2002.

P. Dillon and J. Clark, The theory of diazymes and functional coupling of pyruvate kinase and creatine kinase, Journal of Theoretical Biology, vol.143, issue.2, pp.275-284, 1990.
DOI : 10.1016/S0022-5193(05)80272-3

M. Dolder, B. Walzel, O. Speer, U. Schlattner, and T. Wallimann, Inhibition of the Mitochondrial Permeability Transition by Creatine Kinase Substrates: REQUIREMENT FOR MICROCOMPARTMENTATION, Journal of Biological Chemistry, vol.278, issue.20, pp.17760-17766, 2003.
DOI : 10.1074/jbc.M208705200

URL : https://hal.archives-ouvertes.fr/inserm-00390849

P. Dzeja, A. Terzic, and B. Wieringa, Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009856.23646.38

M. Gorselink, M. Drost, W. Coumans, G. Van-kranenburg, R. Hesselink et al., Impaired muscular contractile performance and adenine nucleotide handling in creatine kinase-deficient mice, Am J Physiol, vol.281, pp.619-625, 2001.

M. Gorselink, M. Drost, and G. Vandervusse, Murine muscles deficient in creatine kinase tolerate repeated series of high-intensity contractions, Pfl??gers Archiv, vol.443, issue.2, pp.274-279, 2001.
DOI : 10.1007/s004240100687

L. Gustafson and J. Vanbeek, Activation time of myocardial oxidative phosphorylation in creatine kinase and adenylate kinase knockout mice, American Journal of Physiology - Heart and Circulatory Physiology, vol.282, issue.6, pp.2259-2264, 2002.
DOI : 10.1152/ajpheart.00264.2001

B. Harrison, M. Bell, D. Allen, W. Byrnes, and L. Leinwand, Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice, Journal of Applied Physiology, vol.92, issue.1, pp.313-322, 2002.
DOI : 10.1152/japplphysiol.00832.2001

E. Janssen, A. Terzic, B. Wieringa, and P. Dzeja, Impaired Intracellular Energetic Communication in Muscles from Creatine Kinase and Adenylate Kinase (M-CK/AK1) Double Knock-out Mice, Journal of Biological Chemistry, vol.278, issue.33, pp.30441-30449, 2003.
DOI : 10.1074/jbc.M303150200

F. Joubert, J. Mazet, P. Mateo, and J. Hoerter, 31P NMR Detection of Subcellular Creatine Kinase Fluxes in the Perfused Rat Heart. CONTRACTILITY MODIFIES ENERGY TRANSFER PATHWAYS, Journal of Biological Chemistry, vol.277, issue.21, pp.18469-18476, 2002.
DOI : 10.1074/jbc.M200792200

A. Kaasik, V. Veksler, E. Boehm, M. Novotova, and R. Ventura-clapier, From energy store to energy channeling: a study in creatine kinase deficient fast skeletal muscle, FASEB J, vol.17, pp.708-710, 2003.

L. Kay, K. Nicolay, B. Wieringa, V. Saks, and T. Wallimann, Direct Evidence for the Control of Mitochondrial Respiration by Mitochondrial Creatine Kinase in Oxidative Muscle Cells in Situ, Journal of Biological Chemistry, vol.275, issue.10, pp.6937-6944, 2000.
DOI : 10.1074/jbc.275.10.6937

T. Kraft, T. Hornemann, M. Stolz, V. Nier, and T. Wallimann, Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ, Journal of Muscle Research and Cell Motility, vol.21, issue.7, pp.691-703, 2000.
DOI : 10.1023/A:1005623002979

V. Kupriyanov, E. Seppet, and V. Saks, Creatine phosphate synthesis coupled with glycolytic reactions in myocardial cell cytosol, Biokhimiya, vol.43, pp.1468-1477, 1979.

I. Lerman, B. Harrison, K. Freeman, T. Hewett, D. Allen et al., Genetic variability in forced and voluntary endurance exercise performance in seven inbred mouse strains, Journal of Applied Physiology, vol.92, issue.6, pp.2245-2255, 2002.
DOI : 10.1152/japplphysiol.01045.2001

R. Meyer, H. Sweeney, and M. Kushmerick, A simple analysis of the "phosphocreatine shuttle", Am J Physiol Cell Physiol, vol.246, pp.365-377, 1984.

A. Minajeva, R. Ventura-clapier, and V. Veksler, Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase, Pfl??gers Archiv - European Journal of Physiology, vol.135, issue.134, pp.904-912, 1996.
DOI : 10.1007/s004240050214

I. Momken, P. Lechene, R. Ventura-clapier, and V. Veksler, Voluntary physical activity alterations in endothelial nitric oxide synthase knockout mice, AJP: Heart and Circulatory Physiology, vol.287, issue.2, pp.914-920, 2004.
DOI : 10.1152/ajpheart.00651.2003

M. Nahrendorf, M. Spindler, K. Hu, L. Bauer, O. Ritter et al., Creatine kinase knockout mice show left ventricular hypertrophy and dilatation, but unaltered remodeling post-myocardial infarction, Cardiovascular Research, vol.65, issue.2, pp.419-427, 2005.
DOI : 10.1016/j.cardiores.2004.10.006

M. Novotova, I. Zahradnik, G. Brochier, M. Pavlovicova, X. Bigard et al., Joint participation of mitochondria and sarcoplasmic reticulum in the formation of tubular aggregates in gastrocnemius muscle of CK mice, European Journal of Cell Biology, vol.81, issue.2, pp.101-106, 2002.
DOI : 10.1078/0171-9335-00230

R. Payne, R. Haas, and A. Strauss, Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1089, issue.3, pp.352-361, 1991.
DOI : 10.1016/0167-4781(91)90176-M

J. Rosenblatt and R. Woods, Hypertrophy of rat extensor digitorum longus muscle injected with bupivacaine. A sequential histochemical, immunohistochemical, histological and morphometric study, J Anat, vol.181, pp.11-27, 1992.

A. Rossi, H. Eppenberger, P. Volpe, R. Cotrufo, and T. Wallimann, Muscle-type MM creatine kinase is specifically Bound to Sarcoplasmic Reticulum and can support Ca 2+ uptake and regulate local ATP/ADP ratios, J Biol Chem, vol.265, pp.5258-5266, 1990.

V. Saks, T. Kaambre, P. Sikk, M. Eimre, E. Orlova et al., Intracellular energetic units in red muscle cells, Biochemical Journal, vol.356, issue.2, pp.643-657, 2001.
DOI : 10.1042/bj3560643

URL : https://hal.archives-ouvertes.fr/inserm-00391060

K. Saupe, M. Spindler, R. Tian, and J. Ingwall, Impaired Cardiac Energetics in Mice Lacking Muscle-Specific Isoenzymes of Creatine Kinase, Circulation Research, vol.82, issue.8, pp.898-907, 1998.
DOI : 10.1161/01.RES.82.8.898

K. Steeghs, A. Benders, F. Oerlemans, A. Dehaan, A. Heerschap et al., Altered Ca 2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies, Veerkamp J & Wieringa B Cell, vol.89, pp.93-103, 1997.

K. Steeghs, F. Oerlemans, A. Dehaan, A. Heerschap, L. Verdoodt et al., Cytoarchitectural and metabolic adaptations in muscles with mitochondrial and cytosolic creatine kinase deficiencies, Mol Cell Biochem, vol.184, pp.183-194, 1998.
DOI : 10.1007/978-1-4615-5653-4_14

M. Stolz and T. Wallimann, Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK, J Cell Science, vol.111, pp.1207-1216, 1998.

J. Van-deursen, A. Heerschap, F. Oerlemans, W. Ruitenbeek, P. Jap et al., Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity, Cell, vol.74, issue.4, pp.621-631, 1993.
DOI : 10.1016/0092-8674(93)90510-W

F. Vandorsten, M. Nederhoff, K. Nicolay, and C. Vanechteld, P-31 NMR studies of creatine kinase flux in M-creatine kinase-deficient mouse heart, Amer J Physiol, vol.44, pp.1191-1199, 1998.

V. Veksler, A. Kuznetsov, K. Anflous, P. Mateo, J. Van-deursen et al., Muscle Creatine Kinase-deficient Mice: II. CARDIAC AND SKELETAL MUSCLES EXHIBIT TISSUE-SPECIFIC ADAPTATION OF THE MITOCHONDRIAL FUNCTION, Journal of Biological Chemistry, vol.270, issue.34, 1995.
DOI : 10.1074/jbc.270.34.19921

M. Vendelin, M. Eimre, E. Seppet, N. Peet, T. Andrienko et al., Intracellular diffusion of adenosine phosphates is locally restricted in cardiac muscle, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.256-257, 2004.
DOI : 10.1023/B:MCBI.0000009871.04141.64

URL : https://hal.archives-ouvertes.fr/inserm-00391051

R. Ventura-clapier, A. Kuznetsov, V. Veksler, E. Boehm, and K. Anflous, Functional coupling of creatine kinases in muscles: Species and tissue specificity, Molecular and Cellular Biochemistry, vol.184, issue.1/2, pp.231-247, 1998.
DOI : 10.1023/A:1006840508139

R. Ventura-clapier, A. Kuznetsov, A. Albis, J. Van-deursen, B. Wieringa et al., Muscle Creatine Kinase-deficient Mice: I. ALTERATIONS IN MYOFIBRILLAR FUNCTION, Journal of Biological Chemistry, vol.270, issue.34, 1995.
DOI : 10.1074/jbc.270.34.19914

R. Ventura-clapier, V. Veksler, and J. Hoerter, Myofibrillar creatine kinase and cardiac contraction, Mol Cell Biochem, vol.133, pp.125-144, 1994.

T. Wallimann, M. Wyss, D. Brdiczka, K. Nicolay, and H. Eppenberger, Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ???phosphocreatine circuit??? for cellular energy homeostasis, Biochemical Journal, vol.281, issue.1, pp.21-40, 1992.
DOI : 10.1042/bj2810021

J. Watchko, M. Daood, G. Sieck, J. Labella, B. Ameredes et al., Combined myofibrillar and mitochondrial creatine kinase deficiency impairs mouse diaphragm isotonic function, J Applied Physiol, vol.82, pp.1416-1423, 1997.

E. Weibel, L. Bacigalupe, B. Schmitt, and H. Hoppeler, Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor, Respiratory Physiology & Neurobiology, vol.140, issue.2, pp.115-132, 2004.
DOI : 10.1016/j.resp.2004.01.006

M. Wyss, J. Smeitink, R. Wevers, and T. Wallimann, Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1102, issue.2, pp.119-166, 1992.
DOI : 10.1016/0005-2728(92)90096-K

J. Zoll, N. Koulmann, L. Bahi, R. Ventura-clapier, and A. Bigard, Quantitative and qualitative adaptation of skeletal muscle mitochondria to increased physical activity, Journal of Cellular Physiology, vol.194, issue.2, pp.186-193, 2003.
DOI : 10.1002/jcp.10224