A. Bribian, M. J. Barallobre, N. Soussi-yanicostas, and F. De-castro, Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve, Molecular and Cellular Neuroscience, vol.33, issue.1, pp.2-14, 2006.
DOI : 10.1016/j.mcn.2006.05.009

A. Cariboni, F. Pimpinelli, S. Colamarino, R. Zaninetti, M. Piccolella et al., The product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons, Human Molecular Genetics, vol.13, issue.22, pp.2781-2791, 2004.
DOI : 10.1093/hmg/ddh309

S. W. Chong, A. Emelyanov, Z. Gong, and V. Korzh, Expression pattern of two zebrafish genes, cxcr4a and cxcr4b, Mechanisms of Development, vol.109, issue.2, pp.347-354, 2001.
DOI : 10.1016/S0925-4773(01)00520-2

C. Dambly-chaudière, D. Sapède, F. Soubiran, K. Decorde, N. Gompel et al., The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates, Biology of the Cell, vol.95, issue.9, pp.579-587, 2003.
DOI : 10.1016/j.biolcel.2003.10.005

C. Dambly-chaudière, N. Cubedo, and A. Ghysen, Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1, BMC Developmental Biology, vol.7, issue.1, pp.10-1186, 2007.
DOI : 10.1186/1471-213X-7-23

N. B. David, D. Sapède, L. Saint-etienne, C. Thisse, B. Thisse et al., Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1, Proc. Natl. Acad. Sci. U.S.A. 99, pp.16297-16302, 2002.
DOI : 10.1073/pnas.252339399

URL : https://hal.archives-ouvertes.fr/hal-00260357

G. De-morsier, Etudes sur les dysraphies crânio-encéphaliques. 1. Agenesie des lobes olfactifs (telencephaloschizis lateral) et des commissures calleuse et anterieure (telencephaloschizis median) La dysplasie olfacto-genitale, 1955.

S. Ernest, S. Guadagnini, M. Prévost, and N. Soussi-yanicostas, Localization of anosmin-1a and anosmin-1b in the inner ear and neuromasts of zebrafish, Gene Expression Patterns, vol.7, issue.3, 2007.
DOI : 10.1016/j.modgep.2006.09.004

B. Franco, S. Guioli, A. Pragliola, B. Incerti, B. Bardoni et al., A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules, Nature, vol.353, issue.6344, pp.529-536, 1991.
DOI : 10.1038/353529a0

J. M. Gershoni and G. E. Palade, Protein blotting: Principles and applications, Analytical Biochemistry, vol.131, issue.1, pp.1-15, 1983.
DOI : 10.1016/0003-2697(83)90128-8

A. Ghysen and C. Dambly-chaudière, Development of the zebrafish lateral line, Current Opinion in Neurobiology, vol.14, issue.1, pp.67-73, 2004.
DOI : 10.1016/j.conb.2004.01.012

URL : https://hal.archives-ouvertes.fr/hal-00260390

A. Ghysen and C. Dambly-chaudière, The three-sided romance of the lateral line: Glia love axons love precursors love glia, BioEssays, vol.37, issue.5, pp.488-494, 2005.
DOI : 10.1002/bies.20225

URL : https://hal.archives-ouvertes.fr/hal-00264485

A. Ghysen and C. Dambly-chaudière, The lateral line microcosmos, Genes & Development, vol.21, issue.17, pp.2118-2130, 2007.
DOI : 10.1101/gad.1568407

URL : https://hal.archives-ouvertes.fr/hal-00264495

N. Gompel, N. Cubedo, C. Thisse, B. Thisse, C. Dambly-chaudière et al., Pattern formation in the lateral line of zebrafish, Mechanisms of Development, vol.105, issue.1-2, pp.69-77, 2001.
DOI : 10.1016/S0925-4773(01)00382-3

URL : https://hal.archives-ouvertes.fr/hal-00260136

J. Hardelin, A. K. Julliard, B. Moniot, N. Soussi-yanicostas, C. Verney et al., Anosmin-1 is a regionally restricted component of basement membranes and interstitial matrices during organogenesis: Implications for the developmental anomalies of X chromosome-linked Kallmann syndrome, Developmental Dynamics, vol.261, issue.1, pp.26-44, 1999.
DOI : 10.1002/(SICI)1097-0177(199905)215:1<26::AID-DVDY4>3.0.CO;2-D

P. Haas and D. Gilmour, Chemokine Signaling Mediates Self-Organizing Tissue Migration in the Zebrafish Lateral Line, Developmental Cell, vol.10, issue.5, pp.673-680, 2006.
DOI : 10.1016/j.devcel.2006.02.019

Y. Hu, D. Gonzàlez-martinez, S. Kim, and P. M. Bouloux, Cross-talk of anosmin-1, the protein implicated in X-linked Kallmann's syndrome, with heparan sulphate and urokinase-type plasminogen activator, Biochemical Journal, vol.384, issue.3, pp.495-505, 2004.
DOI : 10.1042/BJ20041078

F. J. Kallmann, W. A. Schoenfeld, and S. E. Barrera, The genetic aspects of primary eunuchoidism, Am. J. Mental Deficiency, vol.48, pp.203-236, 1944.

C. B. Kimmel, W. W. Ballard, S. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, pp.253-310, 1995.
DOI : 10.1002/aja.1002030302

V. Lecaudey and D. Gilmour, Organizing moving groups during morphogenesis, Current Opinion in Cell Biology, vol.18, issue.1, pp.102-107, 2006.
DOI : 10.1016/j.ceb.2005.12.001

V. Ledent, Postembryonic development of the posterior lateral line in zebrafish, Development, vol.129, pp.597-604, 2002.

R. Legouis, J. Hardelin, J. Levillier, J. Claverie, S. Compain et al., The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules, Cell, vol.67, issue.2, pp.423-435, 1991.
DOI : 10.1016/0092-8674(91)90193-3

Q. Li, K. Shirabe, and J. Kuwada, Chemokine signaling regulates sensory cell migration in zebrafish, Developmental Biology, vol.269, issue.1, pp.123-136, 2004.
DOI : 10.1016/j.ydbio.2004.01.020

W. K. Metcalfe, Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish, The Journal of Comparative Neurology, vol.26, issue.2, pp.218-224, 1985.
DOI : 10.1002/cne.902380208

K. Okubo, F. Sakai, E. L. Lau, G. Yoshizaki, Y. Takeuchi et al., Forebrain Gonadotropin-Releasing Hormone Neuronal Development: Insights from Transgenic Medaka and the Relevance to X-Linked Kallmann Syndrome, Endocrinology, vol.147, issue.3, pp.1076-1084, 2006.
DOI : 10.1210/en.2005-0468

J. Pauls, B. Geldmacher-voss, and J. A. Campos-ortegas, A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development, Development Genes and Evolution, vol.211, issue.12, pp.603-610, 2001.
DOI : 10.1007/s00427-001-0196-x

A. Robertson, G. S. Maccoll, J. A. Nash, M. K. Boehm, S. J. Perkins et al., Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1, Biochemical Journal, vol.357, issue.3, pp.647-659, 2001.
DOI : 10.1042/bj3570647

E. I. Rugarli, C. Ghezzi, V. Valsecchi, and A. Ballabio, The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component, Human Molecular Genetics, vol.5, issue.8, pp.1109-1115, 1996.
DOI : 10.1093/hmg/5.8.1109

D. Sapède, M. Rossel, C. Dambly-chaudière, and A. Ghysen, Role of SDF1 chemokine in the development of lateral line efferent and facial motor neurons, Proceedings of the National Academy of Sciences, vol.102, issue.5, 2005.
DOI : 10.1073/pnas.0406382102

M. Schwandzel-fukuda, D. Bick, and D. W. Pfaff, Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome, Molecular Brain Research, vol.6, issue.4, pp.311-326, 1989.
DOI : 10.1016/0169-328X(89)90076-4

N. Soussi-yanicostas, J. Hardelin, M. Arroyo-jimenez, O. Ardouin, R. Legouis et al., Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system, 1996.

N. Soussi-yanicostas, C. Faivre-sarrailh, J. Hardelin, J. Levilliers, G. Rougon et al., Anosmin-1 underlying the X-chromosome linked Kallmann syndrome is an adhesive molecule that can modulate neurite growth in a celltype specific manner, J. Cell Sci, vol.111, pp.2953-2965, 1998.

N. Soussi-yanicostas, F. De-castro, A. K. Julliard, I. Perfettini, A. Chédotal et al., Anosmin-1, Defective in the X-Linked Form of Kallmann Syndrome, Promotes Axonal Branch Formation from Olfactory Bulb Output Neurons, Cell, vol.109, issue.2, pp.217-228, 2002.
DOI : 10.1016/S0092-8674(02)00713-4

G. Valentin, P. Haas, and D. Gilmour, The Chemokine SDF1a Coordinates Tissue Migration through the Spatially Restricted??Activation??of Cxcr7 and Cxcr4b, Current Biology, vol.17, issue.12, 2007.
DOI : 10.1016/j.cub.2007.05.020

E. J. Villablanca, A. Renucci, D. Sapède, V. Lec, F. Soubiran et al., Control of cell migration in the zebrafish lateral line: Implication of the gene ???Tumour-Associated Calcium Signal Transducer,???tacstd, Developmental Dynamics, vol.21, issue.6, pp.1578-1588, 2006.
DOI : 10.1002/dvdy.20743

URL : https://hal.archives-ouvertes.fr/hal-00264487

M. Westerfield, The Zebrafish Book Univ, 1995.

K. E. Whitlock, K. M. Smith, H. Kim, and M. V. Harden, A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio, Development, vol.132, issue.24, pp.5491-5502, 2005.
DOI : 10.1242/dev.02158