M. Ramalho-santos, D. A. Melton, and A. P. Mcmahon, Hedgehog signals regulate multiple aspects of gastrointestinal development, Development, vol.127, 2000.

M. Van-de-wetering, E. Sancho, C. Verweij, W. De-lau, I. Oving et al., The ??-Catenin/TCF-4 Complex Imposes a Crypt Progenitor Phenotype on Colorectal Cancer Cells, Cell, vol.111, issue.2, pp.241-250, 2002.
DOI : 10.1016/S0092-8674(02)01014-0

E. Batlle, J. T. Henderson, H. Beghtel, M. M. Van-den-born, E. Sanch et al., ) ?-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of the EPHB/EphrinB system, Cell, vol.111, pp.241-263, 2002.

T. S. Stappenbeck and J. I. Gordon, Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine, Development, vol.127, pp.2629-2642, 2000.

T. S. Stappenbeck and J. I. Gordon, Extranuclear sequestration of phospho-Jun N-terminal kinase and distorted villi produced by activated Rac1 in the intestinal epithelium of chimeric mice, Development, vol.128, pp.2603-2614, 2001.

A. Grapin-botton, A. R. Majithia, and D. A. Melton, Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes, Genes & Development, vol.15, issue.4, pp.444-454, 2001.
DOI : 10.1101/gad.846001

C. Yntema and W. S. Hammond, The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo, The Journal of Comparative Neurology, vol.115, issue.2, pp.515-541, 1954.
DOI : 10.1002/cne.901010212

L. Douarin, N. Theillet, and M. A. , The migration of neural crest cells to the wall of the digestive tract in avian embryo, J. Embryol. Exp. Morphol, vol.30, pp.31-48, 1973.

J. M. Wells and D. A. Melton, Vertebrate Endoderm Development, Annual Review of Cell and Developmental Biology, vol.15, issue.1, pp.393-410, 1999.
DOI : 10.1146/annurev.cellbio.15.1.393

R. A. Shivdasani, Molecular Regulation of Vertebrate Early Endoderm Development, Developmental Biology, vol.249, issue.2, pp.191-203, 2002.
DOI : 10.1006/dbio.2002.0765

C. Hudson, D. Clements, R. V. Friday, D. Stott, and H. R. Woodland, Xsox17?? and -?? Mediate Endoderm Formation in Xenopus, Cell, vol.91, issue.3, pp.397-405, 1997.
DOI : 10.1016/S0092-8674(00)80423-7

M. Kanai-azuma, Y. Kanai, J. M. Gad, Y. Tajima, C. Taya et al., Depletion of definitive gut endoderm in Sox17-null mutant mice, Development, vol.129, pp.2367-2379, 2002.

Y. Kanai, M. Kanai-azuma, T. Noce, T. C. Saido, T. Shiroishi et al., Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis, The Journal of Cell Biology, vol.133, issue.3, pp.667-681, 1996.
DOI : 10.1083/jcb.133.3.667

J. A. Graves, Interactions between SRY and SOX genes in mammalian sex determination, BioEssays, vol.90, issue.3, pp.264-269, 1998.
DOI : 10.1002/(SICI)1521-1878(199803)20:3<264::AID-BIES10>3.0.CO;2-1

M. J. Clarkson and V. R. Harley, Sex with two SOX on: SRY and SOX9 in testis development, Trends in Endocrinology & Metabolism, vol.13, issue.3, pp.106-111, 2002.
DOI : 10.1016/S1043-2760(01)00541-0

Y. Sasai, Roles of Sox factors in neural determination: conserved signaling in evolution?, Int. J. Dev. Biol, vol.45, pp.321-326, 2001.

F. Beranger, C. Mejean, B. Moniot, P. Berta, and M. Vandromme, Muscle Differentiation Is Antagonized by SOX15, a New Member of the SOX Protein Family, Journal of Biological Chemistry, vol.275, issue.21, 2000.
DOI : 10.1074/jbc.275.21.16103

B. De-crombrugghe, V. Lefebvre, and K. Nakashima, Regulatory mechanisms in the pathways of cartilage and bone formation, Current Opinion in Cell Biology, vol.13, issue.6, pp.721-727, 2001.
DOI : 10.1016/S0955-0674(00)00276-3

M. Wegner, From head to toes: the multiple facets of Sox proteins, Nucleic Acids Research, vol.27, issue.6, pp.1409-1420, 1999.
DOI : 10.1093/nar/27.6.1409

A. M. Zorn, G. D. Barish, B. O. Williams, P. Lavender, M. W. Klymkowsky et al., Regulation of Wnt Signaling by Sox Proteins, Molecular Cell, vol.4, issue.4, pp.487-498, 1999.
DOI : 10.1016/S1097-2765(00)80200-2

Y. Xia, N. Papalopulu, P. K. Vogt, and J. Li, The oncogenic potential of the high mobility group box protein Sox3, Cancer Res, vol.60, pp.6303-6306, 2000.

M. J. Engleka, E. J. Craig, and D. S. Kessler, VegT Activation of Sox17 at the Midblastula Transition Alters the Response to Nodal Signals in the Vegetal Endoderm Domain, Developmental Biology, vol.237, issue.1, pp.159-172, 2001.
DOI : 10.1006/dbio.2001.0366

J. Alexander and D. Y. Stainier, A molecular pathway leading to endoderm formation in zebrafish, Current Biology, vol.9, issue.20, pp.1147-1157, 1999.
DOI : 10.1016/S0960-9822(00)80016-0

T. Dickmeis, P. Mourrain, L. Saint-etienne, N. Fischer, P. Aanstad et al., A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene, Genes & Development, vol.15, issue.12, pp.1487-1492, 2001.
DOI : 10.1101/gad.196901

Y. Kikuchi, A. Agathon, J. Alexander, C. Thisse, S. Waldron et al., casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish, Genes & Development, vol.15, issue.12, pp.1493-1505, 2001.
DOI : 10.1101/gad.892301

T. Sakaguchi, A. Kuroiwa, and H. Takeda, A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish, Mechanisms of Development, vol.107, issue.1-2, 2001.
DOI : 10.1016/S0925-4773(01)00453-1

T. O. Aoki, N. B. David, G. Minchiott, L. Saint-etienne, T. Dickmeis et al., Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation, Development, vol.129, pp.275-286, 2002.

Y. Ishii, M. Rex, P. J. Scotting, and S. Yasugi, Region-specific expression of chickenSox2 in the developing gut and lung epithelium: Regulation by epithelial-mesenchymal interactions, Developmental Dynamics, vol.175, issue.4, pp.464-475, 1998.
DOI : 10.1002/(SICI)1097-0177(199812)213:4<464::AID-AJA11>3.0.CO;2-Z

W. Takash, J. Canizares, N. Bonneaud, F. Poulat, M. G. Mattei et al., SOX7 transcription factor: sequence, chromosomal localisation, expression, transactivation and interference with Wnt signalling, Nucleic Acids Research, vol.29, issue.21, pp.4274-4283, 2001.
DOI : 10.1093/nar/29.21.4274

URL : http://doi.org/10.1093/nar/29.21.4274

M. Katoh, Expression of human SOX7 in normal tissues and tumors, International Journal of Molecular Medicine, 2002.
DOI : 10.3892/ijmm.9.4.363

M. Katoh, Molecular cloning and characterization of human SOX17, International Journal of Molecular Medicine, 2002.
DOI : 10.3892/ijmm.9.2.153

T. Saitoh and M. Katoh, Expression of human SOX18 in normal tissues and tumors, International Journal of Molecular Medicine, vol.10, pp.339-344, 2002.
DOI : 10.3892/ijmm.10.3.339

W. Mcginnis and R. Krumlauf, Homeobox genes and axial patterning, Cell, vol.68, issue.2, pp.283-302, 1992.
DOI : 10.1016/0092-8674(92)90471-N

R. Krumlauf, Hox genes in vertebrate development, Cell, vol.78, issue.2, pp.191-201, 1994.
DOI : 10.1016/0092-8674(94)90290-9

V. Prince, The Hox Paradox: More Complex(es) Than Imagined, Developmental Biology, vol.249, issue.1, pp.1-15, 2002.
DOI : 10.1006/dbio.2002.0745

G. R. Dressler and P. Gruss, Anterior boundaries of Hox gene expression in mesoderm-derived structures correlate with the linear gene order along the chromosome, Differentiation, vol.41, issue.3, pp.193-201, 1989.
DOI : 10.1111/j.1432-0436.1989.tb00747.x

B. A. Morgan, J. C. Izpisua-belmonte, D. Duboule, and C. J. Tabin, Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations, Nature, vol.358, issue.6383, pp.236-239, 1992.
DOI : 10.1038/358236a0

E. M. Carpenter, <i>Hox</i> Genes and Spinal Cord Development, Developmental Neuroscience, vol.24, issue.1, pp.24-34, 2002.
DOI : 10.1159/000064943

A. Awgulewitsch, M. F. Utset, C. P. Hart, W. Mcginnis, and F. H. Ruddle, Spatial restriction in expression of a mouse homoeo box locus within the central nervous system, Nature, vol.101, issue.6060, pp.328-335, 1986.
DOI : 10.1038/320328a0

D. J. Roberts, R. L. Johnson, A. C. Burke, C. E. Nelson, B. A. Morgan et al., Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut, Development, vol.121, pp.3163-3174, 1995.

D. J. Roberts, D. M. Smith, D. J. Goff, and C. J. Tabin, Epithelial-mesenchymal signaling during the regionalization of the chick gut, Development, vol.125, pp.2791-2801, 1998.

Y. Yokouchi, J. Sakiyama, and A. Kuroiwa, Coordinated Expression of Abd-B Subfamily Genes of the HoxA Cluster in the Developing Digestive Tract of Chick Embryo, Developmental Biology, vol.169, issue.1, pp.76-89, 1995.
DOI : 10.1006/dbio.1995.1128

X. Warot, C. Fromental-ramain, V. Fraulob, P. Chambon, and P. Dolle, Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts, Development, vol.124, pp.4781-4791, 1997.

P. De-santa-barbara and D. J. Roberts, Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13, Development, vol.129, pp.551-561, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00287639

T. Kondo, P. Dolle, J. Zakany, and D. Duboule, Function of posterior HoxD genes in the morphogenesis of the anal sphincter, Development, vol.122, pp.2651-2659, 1996.

F. Beck, F. Tata, and K. Chawengsaksophak, Homeobox genes and gut development, BioEssays, vol.401, issue.5, pp.431-441, 2000.
DOI : 10.1002/(SICI)1521-1878(200005)22:5<431::AID-BIES5>3.0.CO;2-X

T. Sekimoto, K. Yoshinobu, M. Yoshida, S. Kuratani, S. Fujimoto et al., Region-specific expression of murine Hox genes implies the Hox code-mediated patterning of the digestive tract, Genes to Cells, vol.122, issue.1, pp.51-64, 1998.
DOI : 10.1006/dbio.1995.1128

J. Aubin, U. Dery, M. Lemieux, P. Chailler, and L. Jeannotte, Stomach regional specification requires Hoxa5-driven mesenchymal-epithelial signaling, Development, vol.129, pp.4075-4087, 2002.

M. J. Bitgood and A. P. Mcmahon, HedgehogandBmpGenes Are Coexpressed at Many Diverse Sites of Cell???Cell Interaction in the Mouse Embryo, Developmental Biology, vol.172, issue.1, pp.126-138, 1995.
DOI : 10.1006/dbio.1995.0010

D. Bilder and M. P. Scott, HedgehogandWinglessInduce Metameric Pattern in theDrosophilaVisceral Mesoderm, Developmental Biology, vol.201, issue.1, pp.43-56, 1998.
DOI : 10.1006/dbio.1998.8953

URL : http://doi.org/10.1006/dbio.1998.8953

M. Murone, A. Rosenthal, and F. J. De-sauvage, Hedgehog Signal Transduction: From Flies to Vertebrates, Experimental Cell Research, vol.253, issue.1, pp.25-33, 1999.
DOI : 10.1006/excr.1999.4676

Y. Litingtung, L. Lei, H. Westphal, and C. Chiang, Sonic hedgehog is essential to foregut development, Nat. Genet, vol.20, pp.58-61, 1998.

M. Levin, R. L. Johnson, C. D. Stern, M. Kuehn, and C. Tabin, A molecular pathway determining left-right asymmetry in chick embryogenesis, Cell, vol.82, issue.5, pp.803-814, 1995.
DOI : 10.1016/0092-8674(95)90477-8

D. J. Roberts, Molecular mechanisms of development of the gastrointestinal tract, Developmental Dynamics, vol.219, issue.2, pp.109-120, 2000.
DOI : 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1047>3.3.CO;2-Y

A. Grapin-botton and D. A. Melton, Endoderm development: from patterning to organogenesis, Trends in Genetics, vol.16, issue.3, pp.124-130, 2000.
DOI : 10.1016/S0168-9525(99)01957-5

A. Sukegawa, T. Narita, T. Kameda, K. Saitoh, T. Nohno et al., The concentric structure of the developing gut is regulated by Sonic hedgehog derived from endodermal epithelium, Development, vol.127, pp.1971-1980, 2000.

A. Apelqvist, U. Ahlgren, and H. Edlund, Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas, Current Biology, vol.7, issue.10, pp.801-804, 1997.
DOI : 10.1016/S0960-9822(06)00340-X

M. R. Urist, A. Mikulski, and A. Lietze, Solubilized and insolubilized bone morphogenetic protein., Proceedings of the National Academy of Sciences, vol.76, issue.4, pp.1828-1832, 1979.
DOI : 10.1073/pnas.76.4.1828

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC383485

B. L. Hogan, Bone morphogenetic proteins in development, Current Opinion in Genetics & Development, vol.6, issue.4, 1996.
DOI : 10.1016/S0959-437X(96)80064-5

M. Whitman, Smads and early developmental signaling by the TGFbeta superfamily, Genes & Development, vol.12, issue.16, pp.2445-2462, 1998.
DOI : 10.1101/gad.12.16.2445

S. Faure, M. A. Lee, T. Keller, P. Ten-dijke, and M. Whitman, Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development, Development, vol.127, pp.2917-2931, 2000.

S. Faure, P. De-santa-barbara, D. J. Roberts, and M. Whitman, Endogenous Patterns of BMP Signaling during Early Chick Development, Developmental Biology, vol.244, issue.1, pp.44-65, 2002.
DOI : 10.1006/dbio.2002.0579

D. M. Smith, C. Nielsen, C. J. Tabin, and D. J. Roberts, Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary, Development, vol.127, pp.3671-3681, 2000.

C. Nielsen, L. C. Murtaugh, J. C. Chyung, A. Lassar, and D. J. Roberts, Gizzard Formation and the Role of Bapx1, Developmental Biology, vol.231, issue.1, pp.164-174, 2001.
DOI : 10.1006/dbio.2000.0151

D. M. Smith and C. J. Tabin, BMP signalling specifies the pyloric sphincter, Nature, vol.402, pp.748-749, 1999.

T. Narita, K. Saitoh, T. Kameda, A. Kuroiwa, M. Mizutani et al., BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP-2 and Noggin expression, Development, vol.127, pp.981-988, 2000.

K. Haffen, M. Kedinger, and P. Simon-assmann, Mesenchyme-Dependent Differentiation of Epithelial Progenitor Cells in the Gut, Journal of Pediatric Gastroenterology and Nutrition, vol.6, issue.1, pp.14-23, 1987.
DOI : 10.1097/00005176-198701000-00005

W. W. Chang and C. P. Leblond, Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: Vacuolated-columnar, mucous and argentaffin, American Journal of Anatomy, vol.23, issue.1, pp.73-99, 1971.
DOI : 10.1002/aja.1001310105

C. S. Potten, Epithelial cell growth and differentiation. II. Intestinal apoptosis, 1997.

A. Wodarz and R. Nusse, MECHANISMS OF WNT SIGNALING IN DEVELOPMENT, Annual Review of Cell and Developmental Biology, vol.14, issue.1, 1998.
DOI : 10.1146/annurev.cellbio.14.1.59

H. Lickert, A. Kispert, S. Kutsch, and R. Kemler, Expression patterns of Wnt genes in mouse gut development, Mechanisms of Development, vol.105, issue.1-2, pp.181-184, 2001.
DOI : 10.1016/S0925-4773(01)00390-2

M. Van-noort and H. Clevers, TCF Transcription Factors, Mediators of Wnt-Signaling in Development and Cancer, Developmental Biology, vol.244, issue.1, pp.1-8, 2002.
DOI : 10.1006/dbio.2001.0566

S. K. Chan and G. Struhl, Evidence that Armadillo Transduces Wingless by Mediating Nuclear Export or Cytosolic Activation of Pangolin, Cell, vol.111, issue.2, pp.265-280, 2002.
DOI : 10.1016/S0092-8674(02)01037-1

V. Korinek, N. Barker, P. J. Morin, D. Van-wichen, R. De-weger et al., Constitutive Transcriptional Activation by a beta -Catenin-Tcf Complex in APC-/- Colon Carcinoma, Science, vol.275, issue.5307, pp.1784-1787, 1997.
DOI : 10.1126/science.275.5307.1784

V. Korinek, N. Barker, P. Moerer, E. Van-donselaar, G. Hul et al., Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4, Nat. Genet, vol.19, pp.379-383, 1998.

N. Barker, G. Huls, V. Korinek, and H. Clevers, Restricted High Level Expression of Tcf-4 Protein in Intestinal and Mammary Gland Epithelium, The American Journal of Pathology, vol.154, issue.1, pp.29-35, 1999.
DOI : 10.1016/S0002-9440(10)65247-9

Y. J. Lee, B. Swencki, S. Shoichet, and R. A. Shivdasani, A Possible Role for the High Mobility Group Box Transcription Factor Tcf-4 in Vertebrate Gut Epithelial Cell Differentiation, Journal of Biological Chemistry, vol.274, issue.3, pp.1566-1572, 1999.
DOI : 10.1074/jbc.274.3.1566

J. Willert, M. Epping, J. R. Pollack, P. O. Brown, and R. Nusse, A transcriptional response to Wnt protein in human embryonic carcinoma cells, 2002.

J. S. Kim, H. Crooks, T. Dracheva, T. G. Nishanian, B. Sing et al., Oncogenic beta-catenin is required for bone morphogenetic protein 4 expression in human cancer cells, Cancer Res, vol.62, pp.2744-2748, 2002.

. Wnt, (beta)-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine, Development, vol.127, pp.3805-3813

P. Duprey, K. Chowdhury, G. R. Dressler, R. Balling, D. Simon et al., A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine., Genes & Development, vol.2, issue.12a, pp.1647-1654, 1988.
DOI : 10.1101/gad.2.12a.1647

V. Subramanian, B. Meyer, and G. S. Evans, The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium, Differentiation, vol.64, issue.1, pp.11-18, 1998.
DOI : 10.1046/j.1432-0436.1998.6410011.x

R. Houlston, S. Bevan, A. Williams, J. Young, M. Dunlop et al., Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases, Human Molecular Genetics, vol.7, issue.12, pp.1907-1912, 1998.
DOI : 10.1093/hmg/7.12.1907

J. R. Howe, S. Roth, J. C. Ringold, R. W. Summers, H. J. Jarvinen et al., Mutations in the SMAD4/DPC4 Gene in Juvenile Polyposis, Science, vol.280, issue.5366, pp.1086-1088, 1998.
DOI : 10.1126/science.280.5366.1086

J. R. Howe, J. L. Bair, M. G. Sayed, M. E. Anderson, F. A. Mitros et al., Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis, Nature Genetics, vol.28, issue.2, pp.184-187, 2001.
DOI : 10.1038/88919

L. M. Machesky and A. Hall, Role of Actin Polymerization and Adhesion to Extracellular Matrix in Rac- and Rho-induced Cytoskeletal Reorganization, The Journal of Cell Biology, vol.246, issue.4, pp.913-926, 1997.
DOI : 10.1016/S0955-0674(96)80050-0

D. J. Mackay and A. Hall, Rho GTPases, Journal of Biological Chemistry, vol.273, issue.33, pp.20685-20688, 1998.
DOI : 10.1074/jbc.273.33.20685

M. L. Hermiston, M. H. Wong, and J. I. Gordon, Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system., Genes & Development, vol.10, issue.8, pp.985-996, 1996.
DOI : 10.1101/gad.10.8.985

A. Apelqvist, H. Li, L. Sommer, P. Beatus, D. J. Anderson et al., Notch signalling controls pancreatic cell differentiation, Nature, vol.400, pp.877-881, 1999.

J. Lewis, Notch signalling and the control of cell fate choices in vertebrates, Seminars in Cell & Developmental Biology, vol.9, issue.6, 1998.
DOI : 10.1006/scdb.1998.0266

R. Kageyama, T. Ohtsuka, and . Tomitak, The bHLH Gene Hes1 Regulates Differentiation of Multiple Cell Types, Molecules and Cells, vol.10, issue.1, pp.1-7, 2000.
DOI : 10.1007/s10059-000-0001-0

M. Skipper and J. Lewis, Getting to the guts of enteroendocrine differentiation, 2000.

Q. Yang, N. A. Bermingham, M. J. Finegold, and H. Y. Zoghbi, Requirement of Math1 for Secretory Cell Lineage Commitment in the Mouse Intestine, Science, vol.294, issue.5549, pp.2155-2158, 2001.
DOI : 10.1126/science.1065718

A. Santiago and C. A. Erickson, Ephrin-B ligands play a dual role in the control of neural crest cell migration, Development, vol.129, pp.3621-3632, 2002.

R. H. Adams, F. Diella, S. Hennig, F. Helmbacher, U. Deutsch et al., The Cytoplasmic Domain of the Ligand EphrinB2 Is Required for Vascular Morphogenesis but Not Cranial Neural Crest Migration, Cell, vol.104, issue.1, pp.57-69, 2001.
DOI : 10.1016/S0092-8674(01)00191-X

K. Bruckner, E. B. Pasquale, and R. Klein, Tyrosine Phosphorylation of Transmembrane Ligands for Eph Receptors, Science, vol.275, issue.5306, pp.1640-1643, 1997.
DOI : 10.1126/science.275.5306.1640

K. Kullander and R. Klein, Mechanisms and functions of eph and ephrin signalling, Nature Reviews Molecular Cell Biology, vol.3, issue.7, pp.475-486, 2002.
DOI : 10.1038/nrm856

S. M. Shamah, M. Z. Lin, J. L. Goldberg, S. Estrach, M. Sahin et al., EphA Receptors Regulate Growth Cone Dynamics through the Novel Guanine Nucleotide Exchange Factor Ephexin, Cell, vol.105, issue.2, pp.233-244, 2001.
DOI : 10.1016/S0092-8674(01)00314-2

J. Taipale, M. K. Cooper, T. Maiti, and P. A. Beachy, Patched acts catalytically to suppress the activity of Smoothened, Nature, vol.12, issue.6900, pp.892-897, 2002.
DOI : 10.1016/S0960-9822(01)00178-6

P. De-santa-barbara, G. R. Van-den-brink, D. J. Roberts, G. R. Brink, J. C. Hardwick et al., The molecular etiology of gut malformations and diseases Sonic hedgehog regulates gastric gland morphogenesis in man and mouse, Am. J. Med. Genet. Gastroenterology, vol.121, pp.317-328, 2001.

. Van-den, G. R. Brink, J. C. Hardwick, C. Nielsen, C. Xu et al., Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract, Gut, vol.51, issue.5, pp.628-633, 2002.
DOI : 10.1136/gut.51.5.628

M. Hebrok, S. K. Kim, and D. A. Melton, Notochord repression of endodermal Sonic hedgehog permits pancreas development, Genes & Development, vol.12, issue.11, pp.1705-1713, 1998.
DOI : 10.1101/gad.12.11.1705

J. Zhang, A. Rosenthal, F. J. De-sauvage, and R. A. Shivdasani, Downregulation of Hedgehog Signaling Is Required for Organogenesis of the Small Intestine in Xenopus, Developmental Biology, vol.229, issue.1, 2001.
DOI : 10.1006/dbio.2000.9953

R. Mo, J. H. Kim, J. Zhang, C. Chiang, C. C. Hui et al., Anorectal Malformations Caused by Defects in Sonic Hedgehog Signaling, The American Journal of Pathology, vol.159, issue.2, pp.765-774, 2001.
DOI : 10.1016/S0002-9440(10)61747-6

D. Hanahan and R. A. Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

A. Hemminki, D. Markie, I. Tomlinson, E. Avizienyte, S. Roth et al., A serine/threonine kinase gene defective in Peutz-Jeghers syndrome, Nature, vol.391, pp.184-187, 1998.

D. E. Jenne, H. Reimann, J. Nezu, W. Friedel, S. Loff et al., Peutz- Jeghers syndrome is caused by mutations in a novel serine threonine kinase, 1998.