T. J. Byers and D. Branton, Visualization of the protein associations in the erythrocyte membrane skeleton., Proceedings of the National Academy of Sciences, vol.82, issue.18, pp.6153-6157, 1985.
DOI : 10.1073/pnas.82.18.6153

N. Mohandas, A. , and X. , New insights into function of??red cell membrane proteins and??their??interaction with spectrin-based membrane skeleton, Transfusion Clinique et Biologique, vol.13, issue.1-2, pp.29-30, 2006.
DOI : 10.1016/j.tracli.2006.02.017

J. Delaunay, The molecular basis of hereditary red cell membrane disorders, Blood Reviews, vol.21, issue.1, pp.1-20, 2007.
DOI : 10.1016/j.blre.2006.03.005

Y. Ikeda, K. A. Dick, M. R. Weatherspoon, D. Gincel, K. R. Armbrust et al., Spectrin mutations cause spinocerebellar ataxia type 5, Nature Genetics, vol.86, issue.2, pp.184-190, 2006.
DOI : 10.1038/ng1728

M. Komada and P. Soriano, ??IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier, The Journal of Cell Biology, vol.143, issue.2, pp.337-348, 2002.
DOI : 10.1083/jcb.200110003

Y. Tang, V. Katuri, R. Srinivasan, F. Fogt, R. Redman et al., Transforming Growth Factor-?? Suppresses Nonmetastatic Colon Cancer through Smad4 and Adaptor Protein ELF at an Early Stage of Tumorigenesis, Cancer Research, vol.65, issue.10, pp.4228-4237, 2005.
DOI : 10.1158/0008-5472.CAN-04-4585

J. K. Lee, R. S. Coyne, R. R. Dubreuil, L. S. Goldstein, and D. Branton, Cell shape and interaction defects in alpha-spectrin mutants of Drosophila melanogaster, The Journal of Cell Biology, vol.123, issue.6, pp.1797-1809, 1993.
DOI : 10.1083/jcb.123.6.1797

V. Praitis, E. Ciccone, A. , and J. , SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans, Developmental Biology, vol.283, issue.1, pp.157-170, 2005.
DOI : 10.1016/j.ydbio.2005.04.002

B. Rotter, Y. Kroviarski, G. Nicolas, D. Dhermy, and M. C. Lecomte, alphaII-Spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding, Biochemical Journal, vol.378, issue.1, pp.161-168, 2004.
DOI : 10.1042/bj20030955

G. Nicolas, C. M. Fournier, C. Galand, L. Malbert-colas, O. Bournier et al., Tyrosine Phosphorylation Regulates Alpha II Spectrin Cleavage by Calpain, Molecular and Cellular Biology, vol.22, issue.10, pp.3527-3536, 2002.
DOI : 10.1128/MCB.22.10.3527-3536.2002

URL : https://hal.archives-ouvertes.fr/inserm-00284770

J. H. Nedrelow, C. D. Cianci, and J. S. Morrow, c-Src Binds alpha II Spectrin's Src Homology 3 (SH3) Domain and Blocks Calpain Susceptibility by Phosphorylating Tyr1176, Journal of Biological Chemistry, vol.278, issue.9, pp.7735-7741, 2003.
DOI : 10.1074/jbc.M210988200

A. Canizalez-roman and F. Navarro-garcia, Fodrin CaM-binding domain cleavage by Pet from enteroaggregative Escherichia coli leads to actin cytoskeletal disruption, Molecular Microbiology, vol.274, issue.4, pp.947-958, 2003.
DOI : 10.1046/j.1365-2958.2003.03492.x

F. Navarro-garcia, A. Canizalez-roman, B. Q. Sui, J. P. Nataro, and Y. Azamar, The Serine Protease Motif of EspC from Enteropathogenic Escherichia coli Produces Epithelial Damage by a Mechanism Different from That of Pet Toxin from Enteroaggregative E. coli, Infection and Immunity, vol.72, issue.6, pp.3609-3621, 2004.
DOI : 10.1128/IAI.72.6.3609-3621.2004

M. Simonovic, Z. Zhang, C. D. Cianci, T. A. Steitz, and M. , Structure of the Calmodulin ??II-Spectrin Complex Provides Insight into the Regulation of Cell Plasticity, Journal of Biological Chemistry, vol.281, issue.45, pp.34333-34340, 2006.
DOI : 10.1074/jbc.M604613200

S. M. Harwood, M. M. Yaqoob, A. , and D. A. , Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis, Annals of Clinical Biochemistry, vol.42, issue.6, pp.415-431, 2005.
DOI : 10.1258/000456305774538238

P. Leneuve, S. Colnot, G. Hamard, F. Francis, M. Niwa-kawakita et al., Cre-mediated germline mosaicism: a new transgenic mouse for the selective removal of residual markers from tri-lox conditional alleles, Nucleic Acids Research, vol.31, issue.5, p.21, 2003.
DOI : 10.1093/nar/gng021

I. Rubera, C. Poujeol, G. Bertin, L. Hasseine, L. Counillon et al., Specific Cre/Lox Recombination in the Mouse Proximal Tubule, Journal of the American Society of Nephrology, vol.15, issue.8, pp.2050-2056, 2004.
DOI : 10.1097/01.ASN.0000133023.89251.01

URL : https://hal.archives-ouvertes.fr/hal-00320804

S. B. Hedges, The origin and evolution of model organisms, Nature Reviews Genetics, vol.78, issue.11, pp.838-849, 2002.
DOI : 10.1038/nrg929

K. K. Wang, R. Posmantur, R. Nath, K. Mcginnis, M. Whitton et al., Simultaneous Degradation of ??II- and ??II-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells, Journal of Biological Chemistry, vol.273, issue.35, pp.22490-22497, 1998.
DOI : 10.1074/jbc.273.35.22490

J. W. Geddes, V. Bondada, T. L. Tekirian, Z. Pang, and R. G. Siman, Perikaryal accumulation and proteolysis of neurofilament proteins in the post-mortem rat brain, Neurobiology of Aging, vol.16, issue.4, pp.651-660, 1995.
DOI : 10.1016/0197-4580(95)00062-J

A. S. Harris and J. S. Morrow, Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin., Proceedings of the National Academy of Sciences, vol.87, issue.8, pp.3009-3013, 1990.
DOI : 10.1073/pnas.87.8.3009

H. Chen, A. A. Khan, F. Liu, D. M. Gilligan, L. L. Peters et al., Combined Deletion of Mouse Dematin-Headpiece and beta-Adducin Exerts a Novel Effect on the Spectrin-Actin Junctions Leading to Erythrocyte Fragility and Hemolytic Anemia, Journal of Biological Chemistry, vol.282, issue.6, pp.4124-4135, 2006.
DOI : 10.1074/jbc.M610231200

L. L. Peters, R. A. Shivdasani, S. C. Liu, M. Hanspal, K. M. John et al., Anion Exchanger 1 (Band 3) Is Required to Prevent Erythrocyte Membrane Surface Loss but Not to Form the Membrane Skeleton, Cell, vol.86, issue.6, pp.917-927, 1996.
DOI : 10.1016/S0092-8674(00)80167-1

A. Lee, J. S. Morrow, F. , and V. M. , Caspase Remodeling of the Spectrin Membrane Skeleton during Lens Development and Aging, Journal of Biological Chemistry, vol.276, issue.23, pp.20735-20742, 2001.
DOI : 10.1074/jbc.M009723200

P. A. Bignone and A. J. Baines, Spectrin ??II and ??II isoforms interact with high affinity at the tetramerization site, Biochemical Journal, vol.374, issue.3, pp.613-624, 2003.
DOI : 10.1042/bj20030507

V. M. Fowler, A. , and E. J. , Spectrin redistributes to the cytosol and is phosphorylated during mitosis in cultured cells, The Journal of Cell Biology, vol.119, issue.6, pp.1559-1572, 1992.
DOI : 10.1083/jcb.119.6.1559

G. Lynch and M. Baudry, Brain spectrin, calpain and long-term changes in synaptic efficacy, Brain Research Bulletin, vol.18, issue.6, pp.809-815, 1987.
DOI : 10.1016/0361-9230(87)90220-6

E. D. Ozkan, F. S. Lee, and T. Ueda, A protein factor that inhibits ATP-dependent glutamate and ??-aminobutyric acid accumulation into synaptic vesicles: Purification and initial characterization, Proceedings of the National Academy of Sciences, vol.94, issue.8, pp.4137-4142, 1997.
DOI : 10.1073/pnas.94.8.4137

A. Wechsler and V. I. Teichberg, Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin, The EMBO Journal, vol.17, issue.14, pp.3931-3939, 1998.
DOI : 10.1093/emboj/17.14.3931

G. Lynch, C. S. Rex, and C. M. Gall, LTP consolidation: Substrates, explanatory power, and functional significance, Neuropharmacology, vol.52, issue.1, pp.12-23, 2007.
DOI : 10.1016/j.neuropharm.2006.07.027