]. A. Frankel and C. O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, issue.6, pp.1189-1193, 1988.
DOI : 10.1016/0092-8674(88)90263-2

M. Green and P. M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, vol.55, issue.6, pp.1179-1188, 1988.
DOI : 10.1016/0092-8674(88)90262-0

A. Joliot, C. Pernelle, B. H. Deagostini, and A. Prochiantz, Antennapedia homeobox peptide regulates neural morphogenesis., Proceedings of the National Academy of Sciences, vol.88, issue.5, pp.1864-1872, 1991.
DOI : 10.1073/pnas.88.5.1864

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC51126

D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing et al., Cell Internalization of the Third Helix of the Antennapedia Homeodomain Is Receptor-independent, Journal of Biological Chemistry, vol.271, issue.30, pp.18188-18193, 1996.
DOI : 10.1074/jbc.271.30.18188

]. E. Vives, P. Brodin, and B. Lebleu, A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, Journal of Biological Chemistry, vol.272, issue.25, pp.16010-16017, 1997.
DOI : 10.1074/jbc.272.25.16010

]. P. Wender, J. B. Rothbard, T. C. Jessop, E. L. Kreider, and B. L. Wylie, Oligocarbamate Molecular Transporters:?? Design, Synthesis, and Biological Evaluation of a New Class of Transporters for Drug Delivery, Journal of the American Chemical Society, vol.124, issue.45, pp.13382-13383, 2002.
DOI : 10.1021/ja0275109

D. J. Mitchell, D. T. Kim, L. Steinman, C. G. Fathman, and J. B. Rothbard, Polyarginine enters cells more efficiently than other polycationic homopolymers, Journal of Peptide Research, vol.55, issue.5, pp.318-325, 2000.
DOI : 10.1139/bcb-76-2-3-235

S. Futaki, Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms, International Journal of Pharmaceutics, vol.245, issue.1-2, pp.1-7, 2002.
DOI : 10.1016/S0378-5173(02)00337-X

L. R. Wright, J. B. Rothbard, and P. A. Wender, Guanidinium Rich Peptide Transporters and Drug Delivery, Current Protein & Peptide Science, vol.4, issue.2, pp.105-124, 2003.
DOI : 10.2174/1389203033487252

S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka et al., Arginine-rich Peptides: AN ABUNDANT SOURCE OF MEMBRANE-PERMEABLE PEPTIDES HAVING POTENTIAL AS CARRIERS FOR INTRACELLULAR PROTEIN DELIVERY, Journal of Biological Chemistry, vol.276, issue.8, pp.5836-5840, 2001.
DOI : 10.1074/jbc.M007540200

E. Vives, C. Granier, P. Prevot, and B. Lebleu, Structure activity relationship study of the plasma membrane translocating potential of a short peptide from HIV-1 Tat protein, Letters in Peptide Science, vol.4, issue.4/6, pp.429-436, 1997.
DOI : 10.1023/A:1008850300184

J. B. Rothbard, E. Kreider, C. L. Vandeusen, L. Wright, B. L. Wylie et al., Arginine-Rich Molecular Transporters for Drug Delivery:?? Role of Backbone Spacing in Cellular Uptake, Journal of Medicinal Chemistry, vol.45, issue.17, pp.3612-3618, 2002.
DOI : 10.1021/jm0105676

D. Delaroche, B. Aussedat, S. Aubry, G. Chassaing, F. Burlina et al., Tracking a New Cell-Penetrating (W/R) Nonapeptide, through an Enzyme-Stable Mass Spectrometry Reporter Tag, Analytical Chemistry, vol.79, issue.5, pp.79-1932, 2007.
DOI : 10.1021/ac061108l

URL : https://hal.archives-ouvertes.fr/hal-00142487

G. P. Dietz and M. Bahr, Delivery of bioactive molecules into the cell: the Trojan horse approach, Molecular and Cellular Neuroscience, vol.27, issue.2, pp.85-131, 2004.
DOI : 10.1016/j.mcn.2004.03.005

E. Vives, Present and future of cell-penetrating peptide mediated delivery systems: ???Is the Trojan horse too wild to go only to Troy????, Journal of Controlled Release, vol.109, issue.1-3, pp.77-85, 2005.
DOI : 10.1016/j.jconrel.2005.09.032

J. P. Gratton, J. Yu, J. W. Griffith, R. W. Babbitt, R. S. Scotland et al., Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo, Nature Medicine, vol.9, issue.3, pp.357-363, 2003.
DOI : 10.1038/nm835

M. Jain, S. C. Chauhan, A. P. Singh, G. Venkatraman, D. Colcher et al., Penetratin improves tumor retention of single-chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors, Cancer Res, pp.65-7840, 2005.

M. C. Morris, J. Depollier, J. Mery, F. Heitz, and G. Divita, A peptide carrier for the delivery of biologically active proteins into mammalian cells, Nature Biotechnology, vol.19, issue.12, pp.1173-1176, 2001.
DOI : 10.1038/nbt1201-1173

S. Deshayes, M. C. Morris, G. Divita, and F. Heitz, Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics, Journal of Peptide Science, vol.20, issue.12, pp.758-765, 2006.
DOI : 10.1002/psc.810

S. Deshayes, M. C. Morris, G. Divita, and F. Heitz, Interactions of amphipathic CPPs with model membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.3, pp.328-335, 2006.
DOI : 10.1016/j.bbamem.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-00649565

M. A. Munoz-morris, F. Heitz, G. Divita, and M. C. Morris, The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes, Biochemical and Biophysical Research Communications, vol.355, issue.4, pp.877-882, 2007.
DOI : 10.1016/j.bbrc.2007.02.046

S. Deshayes, T. Plenat, P. Charnet, G. Divita, G. Molle et al., Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.11, pp.1758-1846, 2006.
DOI : 10.1016/j.bbamem.2006.08.010

S. T. Henriques, A. Quintas, L. A. Bagatolli, F. Homble, and M. A. Castanho, Energy-independent translocation of cell-penetrating peptides occurs without formation of pores. A biophysical study with pep-1, Molecular Membrane Biology, vol.2, issue.4, pp.282-293, 2007.
DOI : 10.1529/biophysj.105.068692

. Rothbard, The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters, Proc Natl Acad Sci U S A, vol.97, pp.13003-13008, 2000.

X. J. Hao, H. Z. Xu, T. Wiesenfeld, T. Hokfelt, U. Bartfai et al., Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo, Nat Biotechnol, pp.16-857, 1998.

M. C. Morris, P. Vidal, L. Chaloin, F. Heitz, and G. Divita, A new peptide vector for efficient delivery of oligonucleotides into mammalian cells, Nucleic Acids Research, vol.25, issue.14, pp.2730-2736, 1997.
DOI : 10.1093/nar/25.14.2730

P. E. Thoren, D. Persson, P. Lincoln, and B. Norden, Membrane destabilizing properties of cell-penetrating peptides, Biophysical Chemistry, vol.114, issue.2-3, pp.169-179, 2005.
DOI : 10.1016/j.bpc.2004.11.016

V. P. Torchilin, R. Rammohan, V. Weissig, and T. S. Levchenko, TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.98-8786, 2001.
DOI : 10.1073/pnas.151247498

. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells, Nature Biotechnology, vol.18, issue.4, pp.410-414, 2000.
DOI : 10.1038/74464

J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure et al., Cell-penetrating Peptides. A REEVALUATION OF THE MECHANISM OF CELLULAR UPTAKE, Journal of Biological Chemistry, vol.278, issue.1, pp.585-590, 2003.
DOI : 10.1074/jbc.M209548200

M. Lundberg and M. Johansson, Positively Charged DNA-Binding Proteins Cause Apparent Cell Membrane Translocation, Biochemical and Biophysical Research Communications, vol.291, issue.2, pp.367-371, 2002.
DOI : 10.1006/bbrc.2002.6450

M. Lundberg, S. Wikstrom, and M. Johansson, Cell surface adherence and endocytosis of protein transduction domains, Molecular Therapy, vol.8, issue.1, pp.143-150, 2003.
DOI : 10.1016/S1525-0016(03)00135-7

S. Futaki, Membrane-permeable arginine-rich peptides and the translocation mechanisms, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.547-558, 2005.
DOI : 10.1016/j.addr.2004.10.009

S. W. Jones, R. Christison, K. Bundell, C. J. Voyce, S. M. Brockbank et al., Characterisation of cell-penetrating peptide-mediated peptide delivery, British Journal of Pharmacology, vol.10, issue.8, pp.1093-1102, 2005.
DOI : 10.1038/sj.bjp.0706279

F. Duchardt, M. Fotin-mleczek, H. Schwarz, R. Fischer, and R. Brock, A Comprehensive Model for the Cellular Uptake of Cationic Cell-penetrating Peptides, Traffic, vol.14, issue.Suppl, pp.848-866, 2007.
DOI : 10.1111/j.1600-0854.2007.00572.x

E. Vives, J. P. Richard, C. Rispal, and B. Lebleu, TAT Peptide Internalization: Seeking the Mechanism of Entry, Current Protein & Peptide Science, vol.4, issue.2, pp.125-132, 2003.
DOI : 10.2174/1389203033487306

H. Brooks, B. Lebleu, and E. Vives, Tat peptide-mediated cellular delivery: back to basics, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.559-577, 2005.
DOI : 10.1016/j.addr.2004.12.001

M. Negishi, Y. Nomizu, S. Sugiura, and . Futaki, Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis, Biochemistry, vol.46, pp.492-501, 2007.

A. Fittipaldi, A. Ferrari, M. Zoppe, C. Arcangeli, V. Pellegrini et al., Cell Membrane Lipid Rafts Mediate Caveolar Endocytosis of HIV-1 Tat Fusion Proteins, Journal of Biological Chemistry, vol.278, issue.36, pp.34141-34149, 2003.
DOI : 10.1074/jbc.M303045200

I. M. Kaplan, J. S. Wadia, and S. F. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis, Journal of Controlled Release, vol.102, issue.1, pp.247-253, 2005.
DOI : 10.1016/j.jconrel.2004.10.018

S. Takehashi, K. Tanaka, J. C. Ueda, A. T. Simpson, Y. Jones et al., Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement, Mol Ther, vol.10, pp.1011-1022, 2004.

J. P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu et al., Cellular Uptake of Unconjugated TAT Peptide Involves Clathrin-dependent Endocytosis and Heparan Sulfate Receptors, Journal of Biological Chemistry, vol.280, issue.15, pp.15300-15306, 2005.
DOI : 10.1074/jbc.M401604200

R. E. Vandenbroucke, S. C. De-smedt, J. Demeester, and N. N. Sanders, Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1768, issue.3, pp.1768-571, 2007.
DOI : 10.1016/j.bbamem.2006.11.006

R. Fischer, K. Kohler, M. Fotin-mleczek, and R. Brock, A Stepwise Dissection of the Intracellular Fate of Cationic Cell-penetrating Peptides, Journal of Biological Chemistry, vol.279, issue.13, pp.12625-12635, 2004.
DOI : 10.1074/jbc.M311461200

E. Dupont, A. Prochiantz, and A. Joliot, Identification of a Signal Peptide for Unconventional Secretion, Journal of Biological Chemistry, vol.282, issue.12, pp.8994-9000, 2007.
DOI : 10.1074/jbc.M609246200

G. Tunnemann, R. M. Martin, S. Haupt, C. Patsch, F. Edenhofer et al., Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells, The FASEB Journal, vol.20, issue.11, pp.20-1775, 2006.
DOI : 10.1096/fj.05-5523com

H. D. Herce and A. E. Garcia, Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 TAT peptide across lipid membranes, Proceedings of the National Academy of Sciences, vol.104, issue.52, pp.20805-20810, 2007.
DOI : 10.1073/pnas.0706574105

M. Rusnati, C. Urbinati, A. Caputo, L. Possati, H. Lortat-jacob et al., Pentosan Polysulfate as an Inhibitor of Extracellular HIV-1 Tat, Journal of Biological Chemistry, vol.276, issue.25, pp.22420-22425, 2001.
DOI : 10.1074/jbc.M010779200

URL : https://hal.archives-ouvertes.fr/hal-01053364

M. Tyagi, M. Rusnati, M. Presta, and M. Giacca, Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans, Journal of Biological Chemistry, vol.276, issue.5, pp.3254-3261, 2001.
DOI : 10.1074/jbc.M006701200

T. Suzuki, S. Futaki, M. Niwa, S. Tanaka, K. Ueda et al., Possible Existence of Common Internalization Mechanisms among Arginine-rich Peptides, Journal of Biological Chemistry, vol.277, issue.4, pp.2437-2443, 2002.
DOI : 10.1074/jbc.M110017200

C. Marty, C. Meylan, H. Schott, K. Ballmer-hofer, and R. A. Schwendener, Enhanced heparan sulfate proteoglycan-mediated uptake of cell-penetrating peptide-modified liposomes, Cellular and Molecular Life Sciences, vol.61, issue.14, pp.61-1785, 2004.
DOI : 10.1007/s00018-004-4166-0

S. Kameyama, M. Horie, T. Kikuchi, T. Omura, A. Tadokoro et al., Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates, Biopolymers, vol.278, issue.2, pp.98-107, 2007.
DOI : 10.1002/bip.20689

S. El-andaloussi, P. Jarver, H. J. Johansson, and U. Langel, Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study, Biochemical Journal, vol.407, issue.2, pp.15-285, 2007.
DOI : 10.1042/BJ20070507

URL : https://hal.archives-ouvertes.fr/hal-00478786

N. J. Caron, S. P. Quenneville, and J. P. Tremblay, Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins, Biochemical and Biophysical Research Communications, vol.319, issue.1, pp.12-20, 2004.
DOI : 10.1016/j.bbrc.2004.04.180

S. Abes, D. Williams, P. Prevot, A. Thierry, M. J. Gait et al., Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates, Journal of Controlled Release, vol.110, issue.3, pp.595-604, 2006.
DOI : 10.1016/j.jconrel.2005.10.026

J. S. Wadia, R. V. Stan, and S. F. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis, Nature Medicine, vol.10, issue.3, pp.310-315, 2004.
DOI : 10.1038/nm996

T. Shiraishi and P. E. Nielsen, Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates, FEBS Letters, vol.37, issue.5, pp.1451-1456, 2006.
DOI : 10.1016/j.febslet.2006.01.077

Y. J. Seo, H. S. Jeong, E. K. Bang, G. T. Hwang, J. H. Jung et al., Cholesterol-Linked Fluorescent Molecular Beacons with Enhanced Cell Permeability, Bioconjugate Chemistry, vol.17, issue.5, pp.17-1151, 2006.
DOI : 10.1021/bc060078q

T. Ledoan, F. Etore, J. P. Tenu, Y. Letourneux, and S. Agrawal, Cell binding, uptake and cytosolic partition of HIV anti-gag Phosphodiester oligonucleotides 3???-linked to cholesterol derivatives in macrophages, Bioorganic & Medicinal Chemistry, vol.7, issue.11, pp.2263-2269, 1999.
DOI : 10.1016/S0968-0896(99)00115-7

I. A. Khalil, S. Futaki, M. Niwa, Y. Baba, N. Kaji et al., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation, Gene Therapy, vol.11, issue.7, pp.11-636, 2004.
DOI : 10.1038/sj.gt.3302128

S. Pujals, J. Fernandez-carneado, M. J. Kogan, J. Martinez, F. Cavelier et al., Replacement of a Proline with Silaproline Causes a 20-Fold Increase in the Cellular Uptake of a Pro-Rich Peptide, Journal of the American Chemical Society, vol.128, issue.26, pp.8479-8483, 2006.
DOI : 10.1021/ja060036c

URL : https://hal.archives-ouvertes.fr/hal-00117466

S. R. Schwarze, A. Ho, A. Vocero-akbani, and S. F. Dowdy, In Vivo Protein Transduction: Delivery of a Biologically Active Protein into the Mouse, Science, vol.285, issue.5433, pp.1569-1572, 1999.
DOI : 10.1126/science.285.5433.1569

G. Cao, W. Pei, H. Ge, Q. Liang, Y. Luo et al., In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis, J Neurosci, pp.22-5423, 2002.

. Temsamani, New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy, Mol Pharmacol, vol.57, pp.679-686, 2000.

U. Niesner, C. Halin, L. Lozzi, M. Gunthert, P. Neri et al., Quantitation of the Tumor-Targeting Properties of Antibody Fragments Conjugated to Cell-Permeating HIV-1 TAT Peptides, Bioconjugate Chemistry, vol.13, issue.4, pp.729-736, 2002.
DOI : 10.1021/bc025517+

E. Vives, Cellular utake of the Tat peptide: an endocytosis mechanism following ionic interactions, Journal of Molecular Recognition, vol.93, issue.5, pp.265-271, 2003.
DOI : 10.1002/jmr.636

D. C. Anderson, E. Nichols, R. Manger, D. Woodle, M. Barry et al., Tumor Cell Retention of Antibody Fab Fragments Is Enhanced by an Attached HIV TAT Protein-Derived Peptide, Biochemical and Biophysical Research Communications, vol.194, issue.2, pp.876-884, 1993.
DOI : 10.1006/bbrc.1993.1903

M. Hu, P. Chen, J. Wang, D. A. Scollard, K. A. Vallis et al., 123)I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclindependent kinase inhibitor, Eur J Nucl Med Mol Imaging, vol.34, issue.1, pp.21-22, 2006.

S. Stein, A. Weiss, K. Adermann, P. Lazarovici, J. Hochman et al., A disulfide conjugate between anti-tetanus antibodies and HIV (37-72)Tat neutralizes tetanus toxin inside chromaffin cells, FEBS Letters, vol.9, issue.3, pp.458-383, 1999.
DOI : 10.1016/S0014-5793(99)01186-2

M. Hallbrink, A. Floren, A. Elmquist, M. Pooga, T. Bartfai et al., Cargo delivery kinetics of cell-penetrating peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1515, issue.2, pp.1515-101, 2001.
DOI : 10.1016/S0005-2736(01)00398-4

T. Subramanian, M. Kuppuswamy, L. Venkatish, A. Srinivasan, and G. Chinnadurai, Functional substitution of the basic domain of the HIV-1 trans-activator, Tat, with the basic domain of the functionally heterologous Rev, Virology, vol.176, issue.1, pp.178-183, 1990.
DOI : 10.1016/0042-6822(90)90242-J

H. M. Moulton, M. H. Nelson, S. A. Hatlevig, M. T. Reddy, and P. L. Iversen, Cellular Uptake of Antisense Morpholino Oligomers Conjugated to Arginine-Rich Peptides, Bioconjugate Chemistry, vol.15, issue.2, pp.15-290, 2004.
DOI : 10.1021/bc034221g

S. Kameyama, M. Horie, T. Kikuchi, T. Omura, T. Takeuchi et al., Effects of cell-permeating peptide binding on the distribution of 125I- labeled Fab fragment in rats, Bioconjug Chem, pp.17-597, 2006.

J. E. King, E. A. Eugenin, C. M. Buckner, and J. W. Berman, HIV tat and neurotoxicity, Microbes and Infection, vol.8, issue.5, pp.1347-1357, 2006.
DOI : 10.1016/j.micinf.2005.11.014

B. S. Weeks, D. M. Lieberman, B. Johnson, E. Roque, M. Green et al., Neurotoxicity of the human immunodeficiency virus type 1 Tat transactivator to PC12 cells requires the Tat amino acid 49-58 basic domain, Journal of Neuroscience Research, vol.268, issue.1, pp.34-40, 1995.
DOI : 10.1002/jnr.490420105

J. M. Sabatier, E. Vives, K. Mabrouk, A. Benjouad, H. Rochat et al., Evidence for neurotoxic activity of Tat from human immunodeficiency virus type 1, J Virol, pp.65-961, 1991.
DOI : 10.1007/978-94-011-2264-1_282

A. Toro, M. Paiva, C. Ackerley, and E. Grunebaum, Intracellular delivery of purine nucleoside phosphorylase (PNP) fused to protein transduction domain corrects PNP deficiency in vitro, Cellular Immunology, vol.240, issue.2, pp.240-107, 2006.
DOI : 10.1016/j.cellimm.2006.07.003

T. Sugita, T. Yoshikawa, Y. Mukai, N. Yamanada, S. Imai et al., Comparative study on transduction and toxicity of protein transduction domains, British Journal of Pharmacology, vol.86, issue.Suppl, 2008.
DOI : 10.1038/sj.bjp.0707678

. Kim, Cholesteryl Oligoarginine Delivering Vascular Endothelial Growth Factor siRNA Effectively Inhibits Tumor Growth in Colon Adenocarcinoma, Molecular Therapy, vol.14, issue.3, pp.343-350, 2006.
DOI : 10.1016/j.ymthe.2006.03.022

R. Akkarawongsa, A. E. Cullinan, A. Zinkel, J. Clarin, and C. R. Brandt, Virus Entry, Journal of Ocular Pharmacology and Therapeutics, vol.22, issue.4, pp.279-289, 2006.
DOI : 10.1089/jop.2006.22.279

Y. J. Park, L. C. Chang, J. F. Liang, C. Moon, C. P. Chung et al., Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study, The FASEB Journal, pp.19-1555, 2005.
DOI : 10.1096/fj.04-2322fje

. Maurer, Cell-permeable peptides induce dose-and length-dependent cytotoxic effects, Biochim Biophys Acta, vol.1768, pp.2222-22234, 2007.

J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider et al., Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation, Nature Medicine, vol.6, issue.11, pp.1253-1257, 2000.
DOI : 10.1038/81359

D. Maurer, TAT transporter as an ocular peptide delivery system, Clin Experiment Ophthalmol, vol.33, pp.628-635, 2005.

K. Inagaki, H. S. Hahn, G. W. Dorn, and D. Mochly-rosen, Additive Protection of the Ischemic Heart Ex Vivo by Combined Treatment With ??-Protein Kinase C Inhibitor and ??-Protein Kinase C Activator, Circulation, vol.108, issue.7, pp.869-875, 2003.
DOI : 10.1161/01.CIR.0000081943.93653.73

S. A. Moschos, S. W. Jones, M. M. Perry, A. E. Williams, J. S. Erjefalt et al., Lung Delivery Studies Using siRNA Conjugated to TAT(48???60) and Penetratin Reveal Peptide Induced Reduction in Gene Expression and Induction of Innate Immunity, Bioconjugate Chemistry, vol.18, issue.5, pp.1450-1459, 2007.
DOI : 10.1021/bc070077d

J. S. Patton and P. R. Byron, Inhaling medicines: delivering drugs to the body through the lungs, Nature Reviews Drug Discovery, vol.9, issue.1, pp.67-74, 2007.
DOI : 10.1038/nrd2153

S. Kameyama, R. Okada, T. Kikuchi, T. Omura, I. Nakase et al., Distribution of immunoglobulin Fab fragment conjugated with HIV-1

T. Jiang, E. S. Olson, Q. T. Nguyen, M. Roy, P. A. Jennings et al., Tumor imaging by means of proteolytic activation of cell-penetrating peptides, Proceedings of the National Academy of Sciences, vol.101, issue.51, pp.17867-17872, 2004.
DOI : 10.1073/pnas.0408191101

V. A. Sethuraman and Y. H. Bae, TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors, Journal of Controlled Release, vol.118, issue.2, pp.216-224, 2007.
DOI : 10.1016/j.jconrel.2006.12.008

V. A. Sethuraman, K. Na, and Y. H. Bae, pH-Responsive Sulfonamide/PEI System for Tumor Specific Gene Delivery:?? An in Vitro Study, Biomacromolecules, vol.7, issue.1, pp.64-70, 2006.
DOI : 10.1021/bm0503571

M. Stubbs, P. M. Mcsheehy, J. R. Griffiths, and C. L. Bashford, Causes and consequences of tumour acidity and implications for treatment, Molecular Medicine Today, vol.6, issue.1, pp.15-19, 2000.
DOI : 10.1016/S1357-4310(99)01615-9

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, Acid-Mediated Tumor Invasion: a Multidisciplinary Study, Cancer Research, vol.66, issue.10, pp.5216-5223, 2006.
DOI : 10.1158/0008-5472.CAN-05-4193

A. A. Kale and V. P. Torchilin, using ???Smart??? pH-sensitive TAT-modified pegylated liposomes, Journal of Drug Targeting, vol.15, issue.7-8, pp.538-545, 2007.
DOI : 10.1023/A:1011951016118

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441052

E. Wagner, C. Plank, K. Zatloukal, M. Cotten, and M. L. Birnstiel, Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle., Proceedings of the National Academy of Sciences, vol.89, issue.17, pp.7934-7938, 1992.
DOI : 10.1073/pnas.89.17.7934

A. M. Vocero-akbani, N. V. Heyden, N. A. Lissy, L. Ratner, and S. F. Dowdy, Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein [see comments], Nat Med, vol.5, pp.29-33, 1999.

E. L. Snyder, B. R. Meade, and S. F. Dowdy, Anti-cancer protein transduction strategies: reconstitution of p27 tumor suppressor function, Journal of Controlled Release, vol.91, issue.1-2, pp.45-51, 2003.
DOI : 10.1016/S0168-3659(03)00212-8

C. Garcia-echeverria, P. Chene, M. J. Blommers, and P. Furet, Discovery of Potent Antagonists of the Interaction between Human Double Minute 2 and Tumor Suppressor p53, Journal of Medicinal Chemistry, vol.43, issue.17, pp.3205-3208, 2000.
DOI : 10.1021/jm990966p

C. Garcia-echeverria, P. Furet, and P. Chene, Coupling of the antennapedia third helix to a potent antagonist of the p53/hdm2 protein???protein interaction, Bioorganic & Medicinal Chemistry Letters, vol.11, issue.16, pp.2161-2164, 2001.
DOI : 10.1016/S0960-894X(01)00394-8

L. Chen and S. D. Harrison, Cell-penetrating peptides in drug development: enabling intracellular targets, Biochemical Society Transactions, vol.35, issue.4, pp.821-825, 2007.
DOI : 10.1042/BST0350821

G. L. Bidwell, I. Fokt, W. Priebe, and D. Raucher, Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin, Biochemical Pharmacology, vol.73, issue.5, pp.73-620, 2007.
DOI : 10.1016/j.bcp.2006.10.028

I. Massodi and D. Raucher, A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells, Journal of Drug Targeting, vol.65, issue.2, pp.611-622, 2007.
DOI : 10.1016/S0197-0186(01)00138-3

K. C. Libutti, B. J. Li, and . Wood, Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect, Clin Cancer Res, vol.13, pp.2722-2727, 2007.

R. Duncan, H. C. Cable, J. B. Lloyd, P. Rejmanova, and J. Kopecek, Degradation of side-chains ofN-(2-hydroxypropyl)methacrylamide copolymers by lysosomal thiol-proteinases, Bioscience Reports, vol.51, issue.Suppl. A, pp.1041-1046, 1982.
DOI : 10.1007/BF01122173

C. J. Gannon, P. Cherukuri, B. I. Yakobson, L. Cognet, J. S. Kanzius et al., Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field, Cancer, vol.270, issue.26 pt 1, pp.2654-2665, 2007.
DOI : 10.1002/cncr.23155

R. K. Schlicher, H. Radhakrishna, T. P. Tolentino, R. P. Apkarian, V. Zarnitsyn et al., Mechanism of intracellular delivery by acoustic cavitation, Ultrasound in Medicine & Biology, vol.32, issue.6, pp.915-924, 2006.
DOI : 10.1016/j.ultrasmedbio.2006.02.1416

T. Tsujisawa, J. Okinaga, T. Fukuda, and . Nishihara, Local delivery system of cytotoxic agents to tumors by focused sonoporation, Cancer Gene Ther, vol.14, pp.354-363, 2007.

Z. G. Gao, H. D. Fain, and N. Rapoport, Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound, Journal of Controlled Release, vol.102, issue.1, pp.203-222, 2005.
DOI : 10.1016/j.jconrel.2004.09.021

Z. Gao, H. D. Fain, and N. Rapoport, Ultrasound-Enhanced Tumor Targeting of Polymeric Micellar Drug Carriers, Molecular Pharmaceutics, vol.1, issue.4, pp.317-330, 2004.
DOI : 10.1021/mp049958h

M. Schnell, H. Niemeyer, H. J. Kessler, W. A. Wester, M. Weber et al., Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man, Clin Cancer Res, vol.12, pp.3942-3949, 2006.

R. Pasqualini, E. Koivunen, and E. Ruoslahti, ??v Integrins as receptors for tumor targeting by circulating ligands, Nature Biotechnology, vol.47, issue.6, pp.542-546, 1997.
DOI : 10.1016/0092-8674(90)90009-4

D. Heckmann and H. Kessler, Design and Chemical Synthesis of Integrin Ligands, Methods Enzymol, vol.426, pp.463-503, 2007.
DOI : 10.1016/S0076-6879(07)26020-3

K. R. Gehlsen, W. S. Argraves, M. D. Pierschbacher, and E. Ruoslahti, Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides [published erratum appears in J Cell Biol 1989 Jun;108(6):following 2546], The Journal of Cell Biology, vol.106, issue.3, pp.925-930, 1988.
DOI : 10.1083/jcb.106.3.925

R. Abou-jawde, T. Choueiri, C. Alemany, and T. Mekhail, An overview of targeted treatments in cancer, Clinical Therapeutics, vol.25, issue.8, pp.2121-2137, 2003.
DOI : 10.1016/S0149-2918(03)80209-6

T. Ekida, C. Nishimura, S. Masuda, S. Itoh, I. Shimada et al., A receptor-binding peptide from human interleukin-6: Isolation and a proton nuclear magnetic resonance study, Biochemical and Biophysical Research Communications, vol.189, issue.1, pp.211-220, 1992.
DOI : 10.1016/0006-291X(92)91546-3

X. F. Wang, M. Birringer, L. F. Dong, P. Veprek, P. Low et al., A Peptide Conjugate of Vitamin E Succinate Targets Breast Cancer Cells with High ErbB2 Expression, Cancer Research, vol.67, issue.7, pp.3337-3344, 2007.
DOI : 10.1158/0008-5472.CAN-06-2480

G. Y. Perret, A. Starzec, N. Hauet, J. Vergote, M. L. Pecheur et al., In vitro evaluation and biodistribution of a 99mTc-labeled anti-VEGF peptide targeting neuropilin-1, Nuclear Medicine and Biology, vol.31, issue.5, pp.31-575, 2004.
DOI : 10.1016/j.nucmedbio.2004.01.005

. Perret, Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1, Life Sci, vol.79, pp.2370-2381, 2006.

J. K. Scott and G. P. Smith, Searching for peptide ligands with an epitope library, Science, vol.249, issue.4967, pp.386-390, 1990.
DOI : 10.1126/science.1696028

J. A. Este, Virus Entry as a Target for Anti-HIV Intervention, Current Medicinal Chemistry, vol.10, issue.17, pp.1617-1632, 2003.
DOI : 10.2174/0929867033457098

H. Depraetere, A. Viaene, S. Deroo, S. Vauterin, and H. Deckmyn, Identification of peptides, selected by phage display technology, that inhibit von Willebrand factor binding to collagen, Blood, vol.92, pp.4207-4211, 1998.

W. Arap, R. Pasqualini, and E. Ruoslahti, Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model, Science, vol.279, issue.5349, pp.377-380, 1998.
DOI : 10.1126/science.279.5349.377

S. E. Salmon, R. H. Liu-stevens, Y. Zhao, M. Lebl, V. Krchnak et al., High-volume cellular screening for anticancer agents with combinatorial chemical libraries: A new methodology, Molecular Diversity, vol.34, issue.1-2, pp.57-63, 1996.
DOI : 10.1007/BF01718701

O. H. Aina, T. C. Sroka, M. L. Chen, and K. S. Lam, Therapeutic cancer targeting peptides, Therapeutic cancer targeting peptides, pp.184-199, 2002.
DOI : 10.1002/bip.10257

O. H. Aina, R. Liu, J. L. Sutcliffe, J. Marik, C. X. Pan et al., From Combinatorial Chemistry to Cancer-Targeting Peptides, Molecular Pharmaceutics, vol.4, issue.5, pp.631-651, 2007.
DOI : 10.1021/mp700073y

L. Peng, R. Liu, J. Marik, X. Wang, Y. Takada et al., Combinatorial chemistry identifies high-affinity peptidomimetics against ??4??1 integrin for in vivo tumor imaging, Nature Chemical Biology, vol.276, issue.7, pp.381-389, 2006.
DOI : 10.1038/nchembio798

J. A. Varner and D. A. Cheresh, Tumor angiogenesis and the role of vascular cell integrin alphavbeta3, Important Adv Oncol, pp.69-87, 1996.

M. A. Dechantsreiter, E. Planker, B. Matha, E. Lohof, G. Holzemann et al., Integrin Antagonists, Journal of Medicinal Chemistry, vol.42, issue.16, pp.3033-3040, 1999.
DOI : 10.1021/jm970832g

R. Haubner, D. Finsinger, and H. Kessler, Stereoisomeric Peptide Libraries and Peptidomimetics for Designing Selective Inhibitors of the??v??3 Integrin for a New Cancer Therapy, Angewandte Chemie International Edition in English, vol.36, issue.1314, pp.1374-1389, 1997.
DOI : 10.1002/anie.199713741

S. J. Bogdanowich-knipp, D. S. Jois, and T. J. Siahaan, The effect of conformation on the solution stability of linear vs. cyclic RGD peptides, Journal of Peptide Research, vol.33, issue.5, pp.523-529, 1999.
DOI : 10.1023/A:1015929109894

S. L. Hart, L. Collins, K. Gustafsson, and J. W. Fabre, Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains, Gene Therapy, vol.4, issue.11, pp.1225-1230, 1997.
DOI : 10.1038/sj.gt.3300513

A. J. Elderkamp, R. J. Schraa, G. Kok, H. M. Molema, H. W. Pinedo et al., Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug, Mol Cancer Ther, vol.1, pp.901-911, 2002.

M. Pfaff, K. Tangemann, B. Muller, M. Gurrath, G. Muller et al., Selective recognition of cyclic RGD peptides of NMR defined conformation by alpha IIb beta 3, alpha V beta 3, and alpha 5 beta 1 integrins, J Biol Chem, vol.269, pp.20233-20238, 1994.

L. D. D-'andrea, A. D. Gatto, C. Pedone, and E. Benedetti, Peptide-based Molecules in Angiogenesis, Chemical Biology <html_ent glyph="@amp;" ascii="&"/> Drug Design, vol.97, issue.3, pp.115-126, 2006.
DOI : 10.1021/cr980436l

. Takemori, Opioid agonist and antagonist bivalent ligands as receptor probes, Life Sci, pp.31-1283, 1982.

Y. Ye, S. Bloch, B. Xu, and S. Achilefu, Design, Synthesis, and Evaluation of Near Infrared Fluorescent Multimeric RGD Peptides for Targeting Tumors, Journal of Medicinal Chemistry, vol.49, issue.7, pp.2268-2275, 2006.
DOI : 10.1021/jm050947h

J. P. Xiong, T. Stehle, B. Diefenbach, R. Zhang, R. Dunker et al., Crystal Structure of the Extracellular Segment of Integrin alpha Vbeta 3, Crystal structure of the extracellular segment of integrin alpha Vbeta3, pp.339-345, 2001.
DOI : 10.1126/science.1064535

I. Dijkgraaf, J. A. Kruijtzer, S. Liu, A. C. Soede, W. J. Oyen et al., Improved targeting of the ??v??3 integrin by multimerisation of RGD peptides, European Journal of Nuclear Medicine and Molecular Imaging, vol.25, issue.Suppl 2, pp.267-273, 2007.
DOI : 10.1007/s00259-006-0180-9

I. Dijkgraaf, S. Liu, J. A. Kruijtzer, A. C. Soede, W. J. Oyen et al., Effects of linker variation on the in vitro and in vivo characteristics of an 111In-labeled RGD peptide, Nuclear Medicine and Biology, vol.34, issue.1, pp.29-35, 2007.
DOI : 10.1016/j.nucmedbio.2006.10.006

X. Chen, M. Tohme, R. Park, Y. Hou, J. R. Bading et al., Micro-PET Imaging of ??<SUB>v</SUB>??<SUB>3</SUB>-Integrin Expression with <SUP>18</SUP>F-Labeled Dimeric RGD Peptide, Molecular Imaging, vol.3, issue.2, pp.96-104, 2004.
DOI : 10.1162/1535350041464892

M. Lazewatsky, J. Rajopadhye, and . Barrett, Radiolabeled divalent peptidomimetic vitronectin receptor antagonists as potential tumor radiotherapeutic and imaging agents, Bioconjug Chem, vol.18, pp.1266-1279, 2007.

H. L. Handl, R. Sankaranarayanan, J. S. Josan, J. Vagner, E. A. Mash et al., Synthesis and Evaluation of Bivalent NDP-??-MSH(7) Peptide Ligands for Binding to the Human Melanocortin Receptor 4 (hMC4R), Bioconjugate Chemistry, vol.18, issue.4, pp.1101-1119, 2007.
DOI : 10.1021/bc0603642

H. Rajopadhye, F. H. Boonstra, O. C. Corstens, and . Boerman, Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model, Cancer Res, pp.62-6146, 2002.

G. Thumshirn, U. Hersel, S. L. Goodman, and H. Kessler, Multimeric Cyclic RGD Peptides as Potential Tools for Tumor Targeting: Solid-Phase Peptide Synthesis and Chemoselective Oxime Ligation, Chemistry - A European Journal, vol.9, issue.12, pp.2717-2725, 2003.
DOI : 10.1002/chem.200204304

D. Boturyn, J. L. Coll, E. Garanger, M. C. Favrot, and P. Dumy, Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis, Journal of the American Chemical Society, vol.126, issue.18, pp.5730-5739, 2004.
DOI : 10.1021/ja049926n

Z. H. Jin, V. Josserand, J. Razkin, E. Garanger, D. Boturyn et al., Noninvasive optical imaging of ovarian metastases using Cy5-labeled RAFT-c, Mol Imaging, vol.4, issue.5, pp.188-197, 2006.

Z. H. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy et al., In vivo optical imaging of integrin ??V-??3 in mice using multivalent or monovalent cRGD targeting vectors, Molecular Cancer, vol.6, issue.1, pp.41-50, 2007.
DOI : 10.1186/1476-4598-6-41

D. N. Posnett, H. Mcgrath, and J. P. Tam, A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor betachain, J Biol Chem, vol.263, pp.1719-1725, 1988.

D. Lossner, H. Kessler, G. Thumshirn, C. Dahmen, B. Wiltschi et al., Binding of Small Mono- and Oligomeric Integrin Ligands to Membrane-Embedded Integrins Monitored by Surface Plasmon-Enhanced Fluorescence Spectroscopy, Analytical Chemistry, vol.78, issue.13, pp.78-4524, 2006.
DOI : 10.1021/ac052078+