S. Tonegawa, Somatic generation of antibody diversity, Nature, vol.26, issue.5909, pp.575-81, 1983.
DOI : 10.1038/302575a0

K. Rajewsky, Clonal selection and learning in the antibody system, Nature, vol.381, issue.6585, pp.751-759, 1996.
DOI : 10.1038/381751a0

J. C. Weill and C. A. Reynaud, Rearrangement/hypermutation/gene conversion: when, where and why?, Immunology Today, vol.17, issue.2, pp.92-99, 1996.
DOI : 10.1016/0167-5699(96)80586-X

M. F. Goodman and B. Tippin, The expanding polymerase universe, Nat Rev Mol Cell Biol, vol.1, issue.1019, 2000.

P. M. Burgers, Eukaryotic DNA Polymerases: Proposal for a Revised Nomenclature, Journal of Biological Chemistry, vol.276, issue.47, pp.43487-90, 2001.
DOI : 10.1074/jbc.R100056200

U. Hubscher, G. Maga, S. Spadari, D. Eukaryotic, and . Polymerases, Eukaryotic DNA Polymerases, Annual Review of Biochemistry, vol.71, issue.1, pp.133-63, 2002.
DOI : 10.1146/annurev.biochem.71.090501.150041

E. C. Friedberg, R. Wagner, and M. Radman, Specialized DNA Polymerases, Cellular Survival, and the Genesis of Mutations, Science, vol.296, issue.5573, pp.1627-1657, 2002.
DOI : 10.1126/science.1070236

M. Gellert, V(D)J Recombination: RAG Proteins, Repair Factors, and Regulation, Annual Review of Biochemistry, vol.71, issue.1, pp.101-133, 2002.
DOI : 10.1146/annurev.biochem.71.090501.150203

D. G. Schatz and E. Spanopoulou, Biochemistry of V(D)J Recombination, Curr Top Microbiol Immunol, vol.290, pp.49-85, 2005.
DOI : 10.1007/3-540-26363-2_4

P. Revy, L. Malivert, and J. P. De-villartay, Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system, Current Opinion in Allergy and Clinical Immunology, vol.6, issue.6, pp.416-436, 2006.
DOI : 10.1097/01.all.0000246623.72365.43

K. N. Mahajan, N. Mcelhinny, S. A. Mitchell, B. S. Ramsden, and D. A. , Association of DNA Polymerase ?? (pol ??) with Ku and Ligase IV: Role for pol ?? in End-Joining Double-Strand Break Repair, Molecular and Cellular Biology, vol.22, issue.14, pp.5194-202, 2002.
DOI : 10.1128/MCB.22.14.5194-5202.2002

Y. Ma, A Biochemically Defined System for Mammalian Nonhomologous DNA End Joining, Molecular Cell, vol.16, issue.5, pp.701-714, 2004.
DOI : 10.1016/j.molcel.2004.11.017

R. W. Sobol and S. H. Wilson, Mammalian DNA ??-polymerase in base excision repair of alkylation damage, Prog Nucleic Acid Res Mol Biol, vol.68, pp.57-74, 2001.
DOI : 10.1016/S0079-6603(01)68090-5

T. E. Wilson and M. R. Lieber, Efficient Processing of DNA Ends during Yeast Nonhomologous End Joining: EVIDENCE FOR A DNA POLYMERASE ?? (POL4)-DEPENDENT PATHWAY, Journal of Biological Chemistry, vol.274, issue.33, pp.23599-609, 1999.
DOI : 10.1074/jbc.274.33.23599

S. Aoufouchi, Two novel human and mouse DNA polymerases of the polX family, Nucleic Acids Research, vol.28, issue.18, pp.3684-93, 2000.
DOI : 10.1093/nar/28.18.3684

O. Dominguez, DNA polymerase mu (Pol micro), homologous to TdT, could act as a DNA mutator in eukaryotic cells, The EMBO Journal, vol.19, issue.7, pp.1731-1773, 2000.
DOI : 10.1093/emboj/19.7.1731

M. Garcia-diaz, DNA polymerase lambda (Pol ??), a novel eukaryotic DNA polymerase with a potential role in meiosis, Journal of Molecular Biology, vol.301, issue.4, pp.851-67, 2000.
DOI : 10.1006/jmbi.2000.4005

J. W. Lee, Implication of DNA Polymerase ?? in Alignment-based Gap Filling for Nonhomologous DNA End Joining in Human Nuclear Extracts, Journal of Biological Chemistry, vol.279, issue.1, pp.805-816, 2004.
DOI : 10.1074/jbc.M307913200

J. M. Daley, R. L. Laan, A. Suresh, and T. Wilson, DNA Joint Dependence of Pol X Family Polymerase Action in Nonhomologous End Joining, Journal of Biological Chemistry, vol.280, issue.32, pp.29030-29037, 2005.
DOI : 10.1074/jbc.M505277200

N. Mcelhinny and S. A. , A Gradient of Template Dependence Defines Distinct Biological Roles for Family X Polymerases in Nonhomologous End Joining, Molecular Cell, vol.19, issue.3, pp.357-66, 2005.
DOI : 10.1016/j.molcel.2005.06.012

B. Bertocci, D. Smet, A. Weill, J. C. Reynaud, and C. A. , Nonoverlapping Functions of DNA Polymerases Mu, Lambda, and Terminal Deoxynucleotidyltransferase during Immunoglobulin V(D)J Recombination In Vivo, Immunity, vol.25, issue.1, pp.31-41, 2006.
DOI : 10.1016/j.immuni.2006.04.013

URL : https://hal.archives-ouvertes.fr/inserm-00319559

T. H. Thai, M. M. Purugganan, D. B. Roth, and J. Kearney, Distinct and opposite diversifying activities of terminal transferase splice variants, Nature Immunology, vol.3, pp.457-62, 2002.
DOI : 10.1038/ni788

J. A. Repasky, E. Corbett, C. Boboila, and D. G. Schatz, Mutational Analysis of Terminal Deoxynucleotidyltransferase- Mediated N-Nucleotide Addition in V(D)J Recombination, The Journal of Immunology, vol.172, issue.9, pp.5478-88, 2004.
DOI : 10.4049/jimmunol.172.9.5478

N. Doyen, J. B. Boule, F. Rougeon, and C. Papanicolaou, Evidence That the Long Murine Terminal Deoxynucleotidyltransferase Isoform Plays No Role in the Control of V(D)J Junctional Diversity, The Journal of Immunology, vol.172, issue.11, pp.6764-6771, 2004.
DOI : 10.4049/jimmunol.172.11.6764

Y. Ma, U. Pannicke, K. Schwarz, and M. R. Lieber, Hairpin Opening and Overhang Processing by an Artemis/DNA-Dependent Protein Kinase Complex in Nonhomologous End Joining and V(D)J Recombination, Cell, vol.108, issue.6, pp.781-94, 2002.
DOI : 10.1016/S0092-8674(02)00671-2

D. Moshous, Artemis, a Novel DNA Double-Strand Break Repair/V(D)J Recombination Protein, Is Mutated in Human Severe Combined Immune Deficiency, Cell, vol.105, issue.2, pp.177-86, 2001.
DOI : 10.1016/S0092-8674(01)00309-9

Y. G. Yang, T. Lindahl, and D. Barnes, Trex1 Exonuclease Degrades ssDNA to Prevent Chronic Checkpoint Activation and Autoimmune Disease, Cell, vol.131, issue.5, pp.873-86, 2007.
DOI : 10.1016/j.cell.2007.10.017

URL : http://doi.org/10.1016/j.cell.2007.10.017

B. Bertocci, D. Smet, A. Berek, C. Weill, J. C. Reynaud et al., Immunoglobulin ?? Light Chain Gene Rearrangement Is Impaired in Mice Deficient for DNA Polymerase Mu, Immunity, vol.19, issue.2, pp.203-214, 2003.
DOI : 10.1016/S1074-7613(03)00203-6

I. M. Tomlinson, J. P. Cox, E. Gherardi, A. M. Lesk, and C. Chothia, The structural repertoire of the human V kappa domain, Embo J, vol.14, pp.4628-4666, 1995.

J. Lederberg and . Genes, Genes and Antibodies: Do antigens bear instructions for antibody specificity or do they select cell lines that arise by mutation?, Science, vol.129, issue.3364, pp.1649-53, 1959.
DOI : 10.1126/science.129.3364.1649

F. Burnett, The clonal selection theory of acquired immunity, 1959.
DOI : 10.5962/bhl.title.8281

M. G. Weigert, I. M. Cesari, S. J. Yonkovich, and M. Cohn, Variability in the Lambda Light Chain Sequences of Mouse Antibody, Nature, vol.237, issue.5276, pp.1045-1052, 1970.
DOI : 10.1038/2281045a0

A. L. Bothwell, Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a ??2a variable region, Cell, vol.24, issue.3, pp.625-662, 1981.
DOI : 10.1016/0092-8674(81)90089-1

P. J. Gearhart, N. D. Johnson, R. Douglas, and L. Hood, IgG antibodies to phosphorylcholine exhibit more diversity than their IgM counterparts, Nature, vol.2, issue.5810, pp.29-34, 1981.
DOI : 10.1038/291029a0

E. Selsing and U. Storb, Somatic mutation of immunoglobulin light-chain variable-region genes, Cell, vol.25, issue.1, pp.47-58, 1981.
DOI : 10.1016/0092-8674(81)90230-0

G. M. Griffiths, C. Berek, M. Kaartinen, and C. Milstein, Somatic mutation and the maturation of immune response to 2-phenyl oxazolone, Nature, vol.20, issue.5991, pp.271-276, 1984.
DOI : 10.1038/312271a0

S. Brenner and C. Milstein, Origin of Antibody Variation, Nature, vol.55, issue.5046, pp.242-245, 1966.
DOI : 10.1016/0006-291X(65)90417-1

M. Muramatsu, Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells, Journal of Biological Chemistry, vol.274, issue.26, pp.18470-18476, 1999.
DOI : 10.1074/jbc.274.26.18470

M. Muramatsu, Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme, Cell, vol.102, issue.5, pp.553-63, 2000.
DOI : 10.1016/S0092-8674(00)00078-7

P. Revy, Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2), Cell, vol.102, issue.5, pp.565-75, 2000.
DOI : 10.1016/S0092-8674(00)00079-9

D. Noia, J. M. Neuberger, and M. S. , Molecular Mechanisms of Antibody Somatic Hypermutation, Annual Review of Biochemistry, vol.76, issue.1, pp.1-22, 2007.
DOI : 10.1146/annurev.biochem.76.061705.090740

C. A. Reynaud, Mismatch repair and immunoglobulin gene hypermutation: did we learn something?, Immunology Today, vol.20, issue.11, pp.522-529, 1999.
DOI : 10.1016/S0167-5699(99)01540-6

A. Martin and M. D. Scharff, AID and mismatch repair in antibody diversification, Nat Rev Immunol, vol.2, pp.605-619, 2002.

S. A. Martomo and P. J. Gearhart, Somatic hypermutation: subverted DNA repair, Current Opinion in Immunology, vol.18, issue.3, pp.243-251, 2006.
DOI : 10.1016/j.coi.2006.03.007

G. Esposito, Mice reconstituted with DNA polymerase beta -deficient fetal liver cells are able to mount a T cell-dependent immune response and mutate their Ig genes normally, Proceedings of the National Academy of Sciences, vol.97, issue.3, pp.1166-71, 2000.
DOI : 10.1073/pnas.97.3.1166

S. Prakash, R. E. Johnson, and L. Prakash, EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function, Annual Review of Biochemistry, vol.74, issue.1, pp.317-53, 2005.
DOI : 10.1146/annurev.biochem.74.082803.133250

M. F. Goodman, Error-Prone Repair DNA Polymerases in Prokaryotes and Eukaryotes, Annual Review of Biochemistry, vol.71, issue.1, pp.17-50, 2002.
DOI : 10.1146/annurev.biochem.71.083101.124707

E. C. Friedberg, Suffering in silence: the tolerance of DNA damage, Nature Reviews Molecular Cell Biology, vol.121, issue.12, pp.943-53, 2005.
DOI : 10.1038/nrm1781

Y. Zhang, Lesion Bypass Activities of Human DNA Polymerase ??, Journal of Biological Chemistry, vol.277, issue.46, pp.44582-44589, 2002.
DOI : 10.1074/jbc.M207297200

G. Maga, 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins, Nature, vol.17, issue.7144, pp.606-614, 2007.
DOI : 10.1038/nature05843

M. Seki, High-efficiency bypass of DNA damage by human DNA polymerase Q, The EMBO Journal, vol.7, issue.22, pp.4484-94, 2004.
DOI : 10.1093/nar/29.4.928

C. Masutani, The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta, Nature, vol.399, pp.700-704, 1999.

R. E. Johnson, C. M. Kondratick, S. Prakash, and L. Prakash, hRAD30 Mutations in the Variant Form of Xeroderma Pigmentosum, Science, vol.285, issue.5425, pp.263-268, 1999.
DOI : 10.1126/science.285.5425.263

X. Zeng, DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes, Nature Immunology, vol.19, issue.6, pp.537-578, 2001.
DOI : 10.1038/88740

A. Faili, DNA Polymerase ?? Is Involved in Hypermutation Occurring during Immunoglobulin Class Switch Recombination, The Journal of Experimental Medicine, vol.172, issue.2, pp.265-70, 2004.
DOI : 10.1084/jem.20030767

URL : https://hal.archives-ouvertes.fr/pasteur-00177779

F. Delbos, Contribution of DNA polymerase ?? to immunoglobulin gene hypermutation in the mouse, The Journal of Experimental Medicine, vol.85, issue.8, pp.1191-1197, 2005.
DOI : 10.4049/jimmunol.168.8.3702

URL : https://hal.archives-ouvertes.fr/inserm-00310380

S. A. Martomo, Different mutation signatures in DNA polymerase ??- and MSH6-deficient mice suggest separate roles in antibody diversification, Proceedings of the National Academy of Sciences, vol.102, issue.24, pp.8656-61, 2005.
DOI : 10.1073/pnas.0501852102

S. A. Martomo, Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase ??, DNA Repair, vol.5, issue.3, pp.392-400, 2006.
DOI : 10.1016/j.dnarep.2005.12.006

T. Matsuda, Error rate and specificity of human and murine DNA polymerase ??, Journal of Molecular Biology, vol.312, issue.2, pp.335-381, 2001.
DOI : 10.1006/jmbi.2001.4937

Y. I. Pavlov, Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene, Proc Natl Acad Sci, pp.9954-9963, 2002.

E. Ohashi, Fidelity and Processivity of DNA Synthesis by DNA Polymerase ??, the Product of the Human DINB1 Gene, Journal of Biological Chemistry, vol.275, issue.50, pp.39678-84, 2000.
DOI : 10.1074/jbc.M005309200

Y. Zhang, Error-free and error-prone lesion bypass by human DNA polymerase kappa in vitro, Nucleic Acids Research, vol.28, issue.21, pp.4138-4184, 2000.
DOI : 10.1093/nar/28.21.4138

D. Schenten, DNA polymerase ?? deficiency does not affect somatic hypermutation in mice, European Journal of Immunology, vol.32, issue.11, pp.3152-60, 2002.
DOI : 10.1002/1521-4141(200211)32:11<3152::AID-IMMU3152>3.0.CO;2-2

T. Shimizu, Y. Shinkai, T. Ogi, H. Ohmori, and T. Azuma, The absence of DNA polymerase ?? does not affect somatic hypermutation of the mouse immunoglobulin heavy chain gene, Immunology Letters, vol.86, issue.3, pp.265-70, 2003.
DOI : 10.1016/S0165-2478(03)00046-4

F. Delbos, S. Aoufouchi, A. Faili, J. C. Weill, and C. A. Reynaud, DNA polymerase ?? is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse, The Journal of Experimental Medicine, vol.5, issue.1, pp.17-23, 2007.
DOI : 10.1084/jem.20042066

URL : https://hal.archives-ouvertes.fr/inserm-00297328

J. R. Nelson, C. W. Lawrence, and D. C. Hinkle, Deoxycytidyl transferase activity of yeast REV1 protein, Nature, vol.382, issue.6593, pp.729-760, 1996.
DOI : 10.1038/382729a0

Y. Zhang, Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion, Nucleic Acids Research, vol.30, issue.7, pp.1630-1638, 2002.
DOI : 10.1093/nar/30.7.1630

C. Guo, Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis, The EMBO Journal, vol.8, issue.24, pp.6621-6651, 2003.
DOI : 10.1016/S1568-7864(02)00055-1

J. G. Jansen, The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis, Nucleic Acids Research, vol.33, issue.1, pp.356-65, 2005.
DOI : 10.1093/nar/gki189

J. G. Jansen, Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice, The Journal of Experimental Medicine, vol.203, issue.2, pp.319-342, 2006.
DOI : 10.1111/j.1749-6632.1971.tb13550.x

R. E. Johnson, M. T. Washington, L. Haracska, S. Prakash, and L. Prakash, Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions, Nature, vol.406, pp.1015-1024, 2000.

G. Esposito, Disruption of the Rev3l-encoded catalytic subunit of polymerase ?? in mice results in early embryonic lethality, Current Biology, vol.10, issue.19, pp.1221-1225, 2000.
DOI : 10.1016/S0960-9822(00)00726-0

M. Bemark, A. A. Khamlichi, S. L. Davies, and M. S. Neuberger, Disruption of mouse polymerase ?? (Rev3) leads to embryonic lethality and impairs blastocyst development in vitro, Current Biology, vol.10, issue.19, pp.1213-1219, 2000.
DOI : 10.1016/S0960-9822(00)00724-7

J. Wittschieben, Disruption of the developmentally regulated Rev3l gene causes embryonic lethality, Current Biology, vol.10, issue.19, pp.1217-1237, 2000.
DOI : 10.1016/S0960-9822(00)00725-9

X. Zhong, The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins, Nucleic Acids Research, vol.34, issue.17, pp.4731-4773, 2006.
DOI : 10.1093/nar/gkl465

M. Diaz, L. K. Verkoczy, M. F. Flajnik, and N. Klinman, Decreased Frequency of Somatic Hypermutation and Impaired Affinity Maturation but Intact Germinal Center Formation in Mice Expressing Antisense RNA to DNA Polymerase ??, The Journal of Immunology, vol.167, issue.1, pp.327-362, 2001.
DOI : 10.4049/jimmunol.167.1.327

H. Zan, The Translesion DNA Polymerase ?? Plays a Major Role in Ig and bcl-6 Somatic Hypermutation, Immunity, vol.14, issue.5, pp.643-53, 2001.
DOI : 10.1016/S1074-7613(01)00142-X

A. Tissier, J. P. Mcdonald, E. G. Frank, and R. Woodgate, poliota, a remarkably errorprone human DNA polymerase, Genes Dev, vol.14, pp.1642-50, 2000.

E. G. Frank and R. Woodgate, Increased Catalytic Activity and Altered Fidelity of Human DNA Polymerase ?? in the Presence of Manganese, Journal of Biological Chemistry, vol.282, issue.34, pp.24689-96, 2007.
DOI : 10.1074/jbc.M702159200

J. E. Sale and M. S. Neuberger, TdT-Accessible Breaks Are Scattered over the Immunoglobulin V Domain in a Constitutively Hypermutating B Cell Line, Immunity, vol.9, issue.6, pp.859-69, 1998.
DOI : 10.1016/S1074-7613(00)80651-2

S. Denepoux, Induction of Somatic Mutation in a Human B Cell Line In Vitro, Immunity, vol.6, issue.1, pp.35-46, 1997.
DOI : 10.1016/S1074-7613(00)80240-X

H. Zan, Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation, J Immunol, vol.162, pp.3437-3484, 1999.

A. Faili, AID-dependent somatic hypermutation occurs as a DNA single-strand event in the BL2 cell line, Nature Immunology, vol.3, issue.9, pp.815-836, 2002.
DOI : 10.1038/ni826

Z. Xiao, Known components of the immunoglobulin A:T mutational machinery are intact in Burkitt lymphoma cell lines with G:C bias, Molecular Immunology, vol.44, issue.10, pp.2659-66, 2007.
DOI : 10.1016/j.molimm.2006.12.006

A. Faili, Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota, Nature, vol.82, issue.6910, pp.944-951, 2002.
DOI : 10.1038/nature01117

J. P. Mcdonald, 129-derived Strains of Mice Are Deficient in DNA Polymerase ?? and Have Normal Immunoglobulin Hypermutation, The Journal of Experimental Medicine, vol.81, issue.4, pp.635-678, 2003.
DOI : 10.1093/emboj/cdf618

V. Poltoratsky, R. Prasad, J. K. Horton, and S. H. Wilson, Down-regulation of DNA polymerase ?? accompanies somatic hypermutation in human BL2 cell lines, DNA Repair, vol.6, issue.2, pp.244-53, 2007.
DOI : 10.1016/j.dnarep.2006.10.003

H. Zan, The translesion DNA polymerase ?? plays a dominant role in immunoglobulin gene somatic hypermutation, The EMBO Journal, vol.165, issue.21, pp.3757-69, 2005.
DOI : 10.1093/nar/29.4.928

K. Masuda, Absence of DNA polymerase ?? results in decreased somatic hypermutation frequency and altered mutation patterns in Ig genes, DNA Repair, vol.5, issue.11, pp.1384-91, 2006.
DOI : 10.1016/j.dnarep.2006.06.006

K. Masuda, DNA Polymerases ?? and ?? Function in the Same Genetic Pathway to Generate Mutations at A/T during Somatic Hypermutation of Ig Genes, Journal of Biological Chemistry, vol.282, issue.24, pp.17387-94, 2007.
DOI : 10.1074/jbc.M611849200

K. Masuda, DNA polymerase ?? contributes to the generation of C/G mutations during somatic hypermutation of Ig genes, Proceedings of the National Academy of Sciences, vol.102, issue.39, pp.13986-91, 2005.
DOI : 10.1073/pnas.0505636102

P. L. Kannouche, J. Wing, and A. R. Lehmann, Interaction of Human DNA Polymerase ?? with Monoubiquitinated PCNA, Molecular Cell, vol.14, issue.4, pp.491-500, 2004.
DOI : 10.1016/S1097-2765(04)00259-X

E. Warbrick, PCNA binding through a conserved motif, BioEssays, vol.257, issue.3, pp.195-204, 1998.
DOI : 10.1002/(SICI)1521-1878(199803)20:3<195::AID-BIES2>3.0.CO;2-R

M. Bienko, Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis, Science, vol.310, issue.5755, pp.1821-1825, 2005.
DOI : 10.1126/science.1120615

P. Langerak, A. O. Nygren, P. H. Krijger, P. C. Van-den-berk, and H. Jacobs, modification, The Journal of Experimental Medicine, vol.436, issue.8, pp.1989-98, 2007.
DOI : 10.1084/jem.190.3.323

G. L. Moldovan, B. Pfander, and S. Jentsch, PCNA, the Maestro of the Replication Fork, Cell, vol.129, issue.4, pp.665-79, 2007.
DOI : 10.1016/j.cell.2007.05.003

C. Rada, J. M. Di-noia, and M. S. Neuberger, Mismatch Recognition and Uracil Excision Provide Complementary Paths to Both Ig Switching and the A/T-Focused Phase of Somatic Mutation, Molecular Cell, vol.16, issue.2, pp.163-71, 2004.
DOI : 10.1016/j.molcel.2004.10.011

C. Rada, Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice, Current Biology, vol.12, issue.20, pp.1748-55, 2002.
DOI : 10.1016/S0960-9822(02)01215-0

M. Wiesendanger, B. Kneitz, W. Edelmann, and M. D. Scharff, Somatic Hypermutation in Muts Homologue (Msh)3-, Msh6-, and Msh3/Msh6-Deficient Mice Reveals a Role for the Msh2-Msh6 Heterodimer in Modulating the Base Substitution Pattern, Journal of Experimental Medicine, vol.9, issue.6, pp.579-84, 2000.
DOI : 10.1016/S1074-7613(00)80651-2

S. A. Martomo, W. W. Yang, and P. J. Gearhart, A Role for Msh6 But Not Msh3 in Somatic Hypermutation and Class Switch Recombination, The Journal of Experimental Medicine, vol.58, issue.1, pp.61-69, 2004.
DOI : 10.1126/science.1059495

H. M. Shen, A. Tanaka, G. Bozek, D. Nicolae, and U. Storb, Somatic Hypermutation and Class Switch Recombination in Msh6-/-Ung-/- Double-Knockout Mice, The Journal of Immunology, vol.177, issue.8, pp.5386-92, 2006.
DOI : 10.4049/jimmunol.177.8.5386

P. D. Bardwell, Altered somatic hypermutation and reduced class-switch recombination in exonuclease 1???mutant mice, Nature Immunology, vol.5, issue.2, pp.224-233, 2004.
DOI : 10.1038/ni1031

Q. H. Phung, D. B. Winter, R. Alrefai, and P. J. Gearhart, Hypermutation in Ig V genes from mice deficient in the MLH1 mismatch repair protein, J Immunol, vol.162, pp.3121-3125, 1999.

A. Aoufouchi, A. Faili, C. Zober, O. Orlando, S. Weller et al., Ubiquitin-mediated degradation restricts the nuclear lifespan of AID

S. Unniraman and D. G. Schatz, Strand-Biased Spreading of Mutations During Somatic Hypermutation, Science, vol.317, issue.5842, pp.1227-1257, 2007.
DOI : 10.1126/science.1145065

S. Avkin, S. Adar, G. Blander, and Z. Livneh, Quantitative measurement of translesion replication in human cells: Evidence for bypass of abasic sites by a replicative DNA polymerase, Proceedings of the National Academy of Sciences, vol.99, issue.6, pp.3764-3773, 2002.
DOI : 10.1073/pnas.062038699

X. Zeng, G. A. Negrete, C. Kasmer, W. W. Yang, and P. J. Gearhart, Absence of DNA Polymerase ?? Reveals Targeting of C Mutations on the Nontranscribed Strand in Immunoglobulin Switch Regions, The Journal of Experimental Medicine, vol.13, issue.7, pp.917-941, 2004.
DOI : 10.1084/jem.20031831

X. Wu and J. Stavnezer, DNA polymerase ?? is able to repair breaks in switch regions and plays an inhibitory role during immunoglobulin class switch recombination, The Journal of Experimental Medicine, vol.268, issue.7, pp.1677-89, 2007.
DOI : 10.1002/eji.200636645

J. M. Buerstedde, Light chain gene conversion continues at high rate in an ALVinduced cell line, Embo J, vol.9, pp.921-928, 1990.

S. Kim, E. H. Humphries, L. Tjoelker, L. Carlson, and C. B. Thompson, Ongoing diversification of the rearranged immunoglobulin light-chain gene in a bursal lymphoma cell line., Molecular and Cellular Biology, vol.10, issue.6, pp.3224-3255, 1990.
DOI : 10.1128/MCB.10.6.3224

R. S. Harris, J. E. Sale, S. K. Petersen-mahrt, and M. S. Neuberger, AID Is Essential for Immunoglobulin V Gene Conversion in a Cultured B Cell Line, Current Biology, vol.12, issue.5, pp.435-443, 2002.
DOI : 10.1016/S0960-9822(02)00717-0

H. Arakawa, J. Hauschild, and J. M. Buerstedde, Requirement of the Activation-Induced Deaminase (AID) Gene for Immunoglobulin Gene Conversion, Science, vol.295, issue.5558, pp.1301-1307, 2002.
DOI : 10.1126/science.1067308

H. Arakawa, H. Saribasak, and J. M. Buerstedde, Activation-Induced Cytidine Deaminase Initiates Immunoglobulin Gene Conversion and Hypermutation by a Common Intermediate, PLoS Biology, vol.296, issue.7, p.179, 2004.
DOI : 10.1371/journal.pbio.0020179.t001

T. Kawamoto, Dual Roles for DNA Polymerase ?? in Homologous DNA Recombination and Translesion DNA Synthesis, Molecular Cell, vol.20, issue.5, pp.793-802, 2005.
DOI : 10.1016/j.molcel.2005.10.016

C. A. Reynaud, S. Aoufouchi, A. Faili, and J. C. Weill, What role for AID: mutator, or assembler of the immunoglobulin mutasome?, Nature Immunology, vol.4, issue.7, pp.631-639, 2003.
DOI : 10.1038/ni0703-631

M. J. Mcilwraith, Human DNA Polymerase ?? Promotes DNA Synthesis from Strand Invasion Intermediates of Homologous Recombination, Molecular Cell, vol.20, issue.5, pp.783-92, 2005.
DOI : 10.1016/j.molcel.2005.10.001

F. Taddei, Role of mutator alleles in adaptive evolution, Nature, vol.387, issue.6634, pp.700-702, 1997.
DOI : 10.1038/42696

B. Yeiser, E. D. Pepper, M. F. Goodman, and S. E. Finkel, SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness, Proceedings of the National Academy of Sciences, vol.99, issue.13, pp.8737-8778, 2002.
DOI : 10.1073/pnas.092269199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124368

H. Saribasak, Uracil DNA Glycosylase Disruption Blocks Ig Gene Conversion and Induces Transition Mutations, The Journal of Immunology, vol.176, issue.1, pp.365-71, 2006.
DOI : 10.4049/jimmunol.176.1.365

L. J. Simpson and J. Sale, Rev1 is essential for DNA damage tolerance and non-templated immunoglobulin gene mutation in a vertebrate cell line, The EMBO Journal, vol.22, issue.7, pp.1654-64, 2003.
DOI : 10.1093/emboj/cdg161

H. Arakawa, A Role for PCNA Ubiquitination in Immunoglobulin Hypermutation, PLoS Biology, vol.280, issue.11, p.366, 2006.
DOI : 10.1371/journal.pbio.0040366.sg001