D. Vara, H. Salacinski, and R. Kannan, Cardiovascular tissue engineering: state of the art, Pathologie Biologie, vol.53, issue.10, pp.599-612, 2005.
DOI : 10.1016/j.patbio.2004.12.006

W. Abbott, R. Green, and T. Matsumoto, Prosthetic above-knee femoropopliteal bypass grafting: Results of a multicenter randomized prospective trial, Journal of Vascular Surgery, vol.25, issue.1, pp.19-28, 1997.
DOI : 10.1016/S0741-5214(97)70317-3

P. Klinkert, P. Post, and P. Breslau, Saphenous Vein Versus PTFE for Above-Knee Femoropopliteal Bypass. A Review of the Literature, European Journal of Vascular and Endovascular Surgery, vol.27, issue.4, pp.357-362, 2004.
DOI : 10.1016/j.ejvs.2003.12.027

V. Kashyap, S. Ahn, and W. Quinones-baldrich, Infrapopliteal-Lower Extremity Revascularization with Prosthetic Conduit: A 20-Year Experience, Vascular and Endovascular Surgery, vol.36, issue.4, pp.255-262, 2002.
DOI : 10.1177/153857440203600402

M. Baguneid, A. Seifalian, and H. Salacinski, Tissue engineering of blood vessels, British Journal of Surgery, vol.38, issue.3, pp.282-290, 2006.
DOI : 10.1002/bjs.5256

W. Abbott, J. Megerman, and J. Hasson, Effect of compliance mismatch on vascular graft patency, Journal of Vascular Surgery, vol.5, issue.2, pp.376-382, 1987.
DOI : 10.1016/0741-5214(87)90148-0

P. Ao, W. Hawthorne, M. Vicaretti, and J. Fletcher, Development of Intimal Hyperplasia in Six Different Vascular Prostheses, European Journal of Vascular and Endovascular Surgery, vol.20, issue.3, pp.241-249, 2000.
DOI : 10.1053/ejvs.2000.1177

A. Chervu and W. Moore, An overview of intimal hyperplasia, Surg. Gynecol. Obstet, vol.171, pp.433-447, 1990.

G. Bos, A. Poot, and T. Beugeling, Small-Diameter Vascular Graft Prostheses: Current Status, Archives of Physiology and Biochemistry, vol.103, issue.2, pp.100-115, 1998.
DOI : 10.1016/S0741-5214(94)70083-4

M. Wusteman, D. Pegg, and R. Warwick, The banking of arterial allografts in the United kingdom. A technical and clinical review, Cell and Tissue Banking, vol.1, issue.4, pp.295-301, 2000.
DOI : 10.1023/A:1010167604609

Y. Song, B. Khirabadi, and F. Lightfoot, Vitreous cryopreservation maintains the function of vascular grafts, Nat. Biotechnol, vol.18, pp.296-299, 2000.

Y. Marois, E. Wagner, and E. Pâtris, Comparison of Healing in Fresh and Preserved Arterial Allografts in the Dog, Annals of Vascular Surgery, vol.13, issue.2, pp.130-140, 1999.
DOI : 10.1007/s100169900231

M. Adham, J. Gournier, and J. Favre, Mechanical Characteristics of Fresh and Frozen Human Descending Thoracic Aorta, Journal of Surgical Research, vol.64, issue.1, pp.32-34, 1996.
DOI : 10.1006/jsre.1996.0302

F. Stanke, D. Riebel, and C. S. , Functional assessment of human femoral arteries after cryopreservation, Journal of Vascular Surgery, vol.28, issue.2, pp.273-283, 1998.
DOI : 10.1016/S0741-5214(98)70163-6

R. Venkatasurbramanian, E. Grassl, and V. Baroca, Effects of Freezing and Cryopreservation on the Mechanical Properties of Arteries, Annals of Biomedical Engineering, vol.19, issue.5, pp.823-832, 2006.
DOI : 10.1007/s10439-005-9044-x

A. Farber, K. Major, and W. Wagner, Cryopreserved saphenous vein allografts in infrainguinal revascularization: analysis of 240 grafts, Journal of Vascular Surgery, vol.38, issue.1, pp.15-21, 2003.
DOI : 10.1016/S0741-5214(03)00330-6

T. Shin-'oka, Y. Imai, and Y. Ikada, Transplantation of a Tissue-Engineered Pulmonary Artery, New England Journal of Medicine, vol.344, issue.7, pp.532-533, 2001.
DOI : 10.1056/NEJM200102153440717

G. Matsumura, N. Hibino, and Y. Ikada, Successful application of tissue engineered vascular autografts: clinical experience, Biomaterials, vol.24, issue.13, pp.2303-2308, 2003.
DOI : 10.1016/S0142-9612(03)00043-7

T. Shin-'oka and G. Matsumura, Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells, J. Thorac. Cardiovasc. Surg, vol.129, issue.6, pp.1330-1338, 2005.

L. Heureux, N. Mcallister, T. , D. La-fuente, and L. , Tissue-Engineered Blood Vessel for Adult Arterial Revascularization, New England Journal of Medicine, vol.357, issue.14, pp.1451-1453, 2007.
DOI : 10.1056/NEJMc071536

J. Vacanti and . Editorial, Editorial: Tissue Engineering: A 20-Year Personal Perspective, Tissue Engineering, vol.13, issue.2, pp.231-232, 2007.
DOI : 10.1089/ten.2006.0351

L. Heureux, N. Dusserre, and N. , Technology Insight: the evolution of tissue-engineered vascular grafts???from research to clinical practice, Nature Clinical Practice Cardiovascular Medicine, vol.79, issue.7, pp.389-395, 2007.
DOI : 10.1038/ncpcardio0930

I. Vesely, Heart valve tissue engineering, Circ. Res, vol.99, issue.4, pp.743-755, 2005.

K. 42-mendelson and F. Schoen, Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges, Annals of Biomedical Engineering, vol.11, issue.Suppl., pp.1799-1819, 2006.
DOI : 10.1007/s10439-006-9163-z

G. Riha, P. Lin, and A. Lumsden, Application of Stem Cells for Vascular Tissue Engineering, Tissue Engineering, vol.11, issue.9-10, pp.1535-1552, 2005.
DOI : 10.1089/ten.2005.11.1535

L. Freed, F. Guilak, and E. Guo, Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling, Tissue Engineering, vol.12, issue.12, pp.3285-3305, 2006.
DOI : 10.1089/ten.2006.12.3285

K. Yow, J. Ingram, and S. Korossis, Tissue engineering of vascular conduits, British Journal of Surgery, vol.5, issue.6, pp.652-661, 2006.
DOI : 10.1002/bjs.5343

A. Boccaccini and J. Blaker, Bioactive composite materials for tissue engineering scaffolds, Expert Review of Medical Devices, vol.2, issue.3, pp.303-317, 2005.
DOI : 10.1586/17434440.2.3.303

C. Sparks, Silicone mandril method of femoropopliteal artery bypass, The American Journal of Surgery, vol.124, issue.2, pp.244-249, 1972.
DOI : 10.1016/0002-9610(72)90021-9

P. Roberts and B. Hopkinson, The Sparks mandril in femoropopliteal bypass., BMJ, vol.2, issue.6096, pp.1190-1191, 1977.
DOI : 10.1136/bmj.2.6096.1190-a

C. Weinberg and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science, vol.231, issue.4736, pp.397-400, 1986.
DOI : 10.1126/science.2934816

H. Salacinski, N. Tai, and R. Carson, In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress, Journal of Biomedical Materials Research, vol.21, issue.2, pp.207-218, 2002.
DOI : 10.1002/jbm.1234

A. Tiwari, H. Salacinski, and A. Seifalian, New prostheses for use in bypass grafts with special emphasis on polyurethanes, Cardiovascular Surgery, vol.10, issue.3, pp.191-197, 1998.
DOI : 10.1016/S0967-2109(02)00004-2

R. Kannan and H. Salacinski, The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: An in vitro study, Biomaterials, vol.27, issue.9, pp.1971-1979, 2005.
DOI : 10.1016/j.biomaterials.2005.10.006

R. Kannan and H. Salacinski, The Antithrombogenic Potential of a Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposite, Biomacromolecules, vol.7, issue.1, pp.215-223, 2006.
DOI : 10.1021/bm050590z

K. Tiaw and S. Teoh, Processing Methods of Ultrathin Poly(??-caprolactone) Films for Tissue Engineering Applications, Biomacromolecules, vol.8, issue.3, pp.807-816, 2007.
DOI : 10.1021/bm060832a

G. Amiel and M. Komura, Engineering of Blood Vessels from Acellular Collagen Matrices Coated with Human Endothelial Cells, Tissue Engineering, vol.12, issue.8, pp.2355-2365, 2006.
DOI : 10.1089/ten.2006.12.2355

G. Lantz, S. Badylak, and M. Hiles, Small Intestinal Submucosa as a Vascular Graft: A Review, Journal of Investigative Surgery, vol.7, issue.3, pp.297-310, 1993.
DOI : 10.1001/archsurg.1980.01380100018004

R. Bordenave, &. Menu, N. Baquey-57-l-'heureux, S. Paquet, and R. Labbe, A completely biological tissue-engineered human blood vessel, FASEB J, vol.12, pp.47-56, 1998.

L. Heureux, N. Dusserre, and N. , Human tissue-engineered blood vessels for adult arterial revascularization, Nature Medicine, vol.76, issue.3, pp.361-365, 2006.
DOI : 10.1038/nm1364

J. Stegemann and S. Kaszuba, Review: Advances in Vascular Tissue Engineering Using Protein-Based Biomaterials, Tissue Engineering, vol.13, issue.11, pp.2601-2613, 2007.
DOI : 10.1089/ten.2007.0196

C. Schmidt and J. Baier, Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering, Biomaterials, vol.21, issue.22, pp.2215-2231, 2000.
DOI : 10.1016/S0142-9612(00)00148-4

J. Hodde, Naturally Occurring Scaffolds for Soft Tissue Repair and Regeneration, Tissue Engineering, vol.8, issue.2, pp.295-308, 2002.
DOI : 10.1089/107632702753725058

H. Kerdjoudj, V. Moby, and N. Berthelemy, The ideal small arterial substitute: role of cell seeding and tissue engineering, Clin. Hemorheol. Microcirc, pp.1-10, 2007.

J. Campbell, J. Efendy, and G. Campbell, Novel Vascular Graft Grown Within Recipient??s Own Peritoneal Cavity, Circulation Research, vol.85, issue.12, pp.1173-1178, 1999.
DOI : 10.1161/01.RES.85.12.1173

L. Xue and H. Greisler, Biomaterials in the development and future of vascular grafts, Journal of Vascular Surgery, vol.37, issue.2
DOI : 10.1067/mva.2003.88

@. Evans, N. Gentleman, E. Polak, and J. , Scaffolds for stem cells, Materials Today, vol.9, issue.12, pp.26-33, 2006.
DOI : 10.1016/S1369-7021(06)71740-0

Q. Pham, U. Sharma, and A. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review, Tissue Eng, vol.1215, pp.1197-1211, 2006.

R. 72-murugan and S. Ramakrishna, Nano-Featured Scaffolds for Tissue Engineering: A Review of Spinning Methodologies, Tissue Engineering, vol.12, issue.3, pp.435-447, 2006.
DOI : 10.1089/ten.2006.12.435

W. Teo, W. He, and S. Ramakrishna, Electrospun scaffold tailored for tissue-specific extracellular matrix, Biotechnology Journal, vol.26, issue.9, pp.918-929, 2006.
DOI : 10.1002/biot.200600044

L. Buttafoco and N. Kolkman, Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials, vol.27, issue.5, pp.724-734, 2006.
DOI : 10.1016/j.biomaterials.2005.06.024

M. Mcmanus and E. Boland, Mechanical properties of electrospun fibrinogen structures, Acta Biomaterialia, vol.2, issue.1, pp.19-28, 2006.
DOI : 10.1016/j.actbio.2005.09.008

L. Niklason, J. Gao, and W. Abbott, Functional Arteries Grown in Vitro, Science, vol.284, issue.5413, pp.816-823, 1985.
DOI : 10.1126/science.284.5413.489

F. Opitz, K. Schenke-layland, T. Cohnert, and U. Stock, Phenotypical plasticity of vascular smooth muscle cells: effect of in vitro and in vivo shear stress for tissue engineering of blood vessels, Tissue Eng, vol.13, issue.10, p.25052514, 2007.

W. Quinones-baldrich, Failure of PTFE Infrainguinal Revascularization: Patterns, Management Alternatives, and Outcome, Annals of Vascular Surgery, vol.5, issue.2, pp.163-169, 1991.
DOI : 10.1007/BF02016750

L. Bordenave, M. Remy-zolghadri, and P. Fernandez, Clinical Performance of Vascular Grafts Lined with Endothelial Cells, Endothelium, vol.8, issue.2, pp.267-275, 1999.
DOI : 10.1126/science.2911735

L. Bordenave, P. Fernandez, and M. Remy-zolghadri, In vitro endothelialized ePTFE prostheses: clinical update 20 years after the first realization, Clin. Hemorheol. Microcirc, vol.33, issue.3, pp.227-234, 2005.

T. Shirota, H. He, H. Yasui, and T. Matsuda, and Fabrication Processing, Tissue Engineering, vol.9, issue.1, pp.127-136, 2003.
DOI : 10.1089/107632703762687609

T. Asahara, T. Murohara, and A. Sullivan, Isolation of Putative Progenitor Endothelial Cells for Angiogenesis, Science, vol.275, issue.5302, pp.964-967, 1997.
DOI : 10.1126/science.275.5302.964

S. Levenberg, Engineering blood vessels from stem cells: recent advances and applications, Current Opinion in Biotechnology, vol.16, issue.5, pp.516-523, 2005.
DOI : 10.1016/j.copbio.2005.08.007

K. Sales, H. Salacinski, and N. Alobaid, Advancing vascular tissue engineering: the role of stem cell technology, Trends in Biotechnology, vol.23, issue.9, pp.461-467, 2005.
DOI : 10.1016/j.tibtech.2005.06.006

B. Barrilleaux, D. Phinney, and D. Prockop, Engineering of Living Tissues with Adult Stem Cells, Tissue Engineering, vol.0, issue.0, pp.3007-3019, 2006.
DOI : 10.1089/ten.2006.12.ft-276

R. Daculsi, M. Remy-zolghadri, and M. Grellier, Signal Transduction and Procoagulant State of Human Cord Blood???Progenitor-Derived Endothelial Cells after Interleukin-1?? Stimulation, Endothelium, vol.95, issue.3, pp.163-171, 2007.
DOI : 10.1152/ajpcell.00243.2002

S. Levenberg, J. Zoldan, Y. Basevitch, and R. Langer, Endothelial potential of human embryonic stem cells, Blood, vol.110, issue.3, pp.806-814, 2007.
DOI : 10.1182/blood-2006-08-019190

L. Ferreira and S. Gerecht, Vascular Progenitor Cells Isolated From Human Embryonic Stem Cells Give Rise to Endothelial and Smooth Muscle Like Cells and Form Vascular Networks In Vivo, Circulation Research, vol.101, issue.3, pp.286-294, 2007.
DOI : 10.1161/CIRCRESAHA.107.150201

D. Harris, M. Badowski, N. Ahmad, and M. Gaballa, The potential of cord blood stem cells for use in regenerative medicine, Expert Opinion on Biological Therapy, vol.12, issue.9, pp.1311-1322, 2007.
DOI : 10.1016/j.transci.2003.11.006

T. Flanagan, C. Cornelissen, and S. Koch, The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning, Biomaterials, vol.28, issue.23, pp.3388-3397, 2007.
DOI : 10.1016/j.biomaterials.2007.04.012

I. Martin, D. Wendt, and M. Heberer, The role of bioreactors in tissue engineering, Trends in Biotechnology, vol.22, issue.2, pp.80-86, 2004.
DOI : 10.1016/j.tibtech.2003.12.001

D. Hamilton, T. Maul, and D. Vorp, Characterization of the Response of Bone Marrow-Derived Progenitor Cells to Cyclic Strain: Implications for Vascular Tissue-Engineering Applications, Tissue Engineering, vol.10, issue.3-4, pp.3-4, 2004.
DOI : 10.1089/107632704323061726

K. Yamamoto, T. Takahashi, and T. Asahara, Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, Journal of Applied Physiology, vol.95, issue.5, pp.2081-2088, 2003.
DOI : 10.1152/japplphysiol.00232.2003

R. Nerem, Atherogenesis: hemodynamics, vascular geometry, and the endothelium, Biorheol, vol.21, p.565, 1984.

P. Davies, Flow-mediated endothelial mechanotransduction, Physiol. Rev, vol.75, pp.519-560, 1995.

S. Chien, Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell, AJP: Heart and Circulatory Physiology, vol.292, issue.3, pp.1209-1224, 2005.
DOI : 10.1152/ajpheart.01047.2006

P. Fernandez, R. Daculsi, and M. Remy-zolghadri, Endothelial Cells Cultured on Engineered Vascular Grafts Are Able to Transduce Shear Stress, Tissue Engineering, vol.0, issue.0, pp.1-7, 2006.
DOI : 10.1089/ten.2006.12.ft-3

V. Moby, C. Boura, and H. Kerdjoudj, Poly(styrenesulfonate)/Poly(allylamine) Multilayers:?? A Route To Favor Endothelial Cell Growth on Expanded Poly(tetrafluoroethylene) Vascular Grafts, Biomacromolecules, vol.8, issue.7, pp.2156-2160, 2007.
DOI : 10.1021/bm070348n

URL : https://hal.archives-ouvertes.fr/inserm-00203470

P. Fernandez, C. Bourget, and R. Bareille, Gene Response in Endothelial Cells Cultured on Engineered Surfaces Is Regulated by Shear Stress, Tissue Engineering, vol.13, issue.7, pp.1607-1614, 2007.
DOI : 10.1089/ten.2006.0399

G. Vunjak-novakovic and D. Kaplan, Tissue Engineering: The Next Generation, Tissue Engineering, vol.12, issue.12, pp.3261-3263, 2006.
DOI : 10.1089/ten.2006.12.3261

A. Bock, D. Ibarreta, and . Rodriguez-cerezo, Human tissue-engineered products ? Today's markets and future prospects, 2003.

J. Meinhart, J. Schense, and H. Schima, Enhanced Endothelial Cell Retention on Shear-Stressed Synthetic Vascular Grafts Precoated with RGD-Cross-Linked Fibrin, Tissue Engineering, vol.11, issue.5-6
DOI : 10.1089/ten.2005.11.887

N. Alobaid, H. Salacinski, and K. Sales, Nanocomposite Containing Bioactive Peptides Promote Endothelialisation by Circulating Progenitor Cells: An In vitro Evaluation, European Journal of Vascular and Endovascular Surgery, vol.32, issue.1, pp.76-83, 2006.
DOI : 10.1016/j.ejvs.2005.11.034

L. Trommelmans, J. Selling, and K. Dierickx, A Critical Assessment of the Directive on Tissue Engineering of the European Union, Tissue Engineering, vol.13, issue.4, pp.667-672, 2007.
DOI : 10.1089/ten.2006.0089

@. Affiliations, M. Laurence-bordenave-phd, . Chu-de-bordeaux, F. Pessac, F. Inserm et al., laurence.bordenave@u-bordeaux2, pp.33-383