J. Ervasti and K. Campbell, A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin, The Journal of Cell Biology, vol.122, issue.4, pp.809-823, 1993.
DOI : 10.1083/jcb.122.4.809

O. Ibraghimov-beskrovnaya, J. Ervasti, C. Leveille, C. Slaughter, and S. Sernett, Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix, Nature, vol.355, issue.6362, pp.696-702, 1992.
DOI : 10.1038/355696a0

O. Ibraghimov-beskrovnaya, A. Milatovich, T. Ozcelik, Y. B. Koepnick, and K. , Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms dystroglycans develop muscular dystrophy and have disrupted myoneural synapses, Nat Genet, vol.23, pp.338-342, 1993.

C. Jacobson, P. Cote, S. Rossi, R. Rotundo, and S. Carbonetto, The Dystroglycan Complex Is Necessary for Stabilization of Acetylcholine Receptor Clusters at Neuromuscular Junctions and Formation of the Synaptic Basement Membrane, The Journal of Cell Biology, vol.260, issue.3, pp.435-450, 2001.
DOI : 10.1083/jcb.146.5.1133

M. Tremblay and S. Carbonetto, An Extracellular Pathway for Dystroglycan Function in Acetylcholine Receptor Aggregation and Laminin Deposition in Skeletal Myotubes, Journal of Biological Chemistry, vol.281, issue.19, pp.13365-13373, 2006.
DOI : 10.1074/jbc.M600912200

D. Blake and S. Kroger, The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle?, Trends in Neurosciences, vol.23, issue.3, pp.92-99, 2000.
DOI : 10.1016/S0166-2236(99)01510-6

S. Kueh, S. Head, and J. Morley, Gaba(A) receptor expression and inhibitory post-synaptic currents in cerebellar purkinje cells in dystrophin-deficient mdx mice, Clin Exp Pharmacol Physiol, 2007.

F. Montanaro and S. Carbonetto, Targeting Dystroglycan in the Brain, Neuron, vol.37, issue.2, pp.193-196, 2003.
DOI : 10.1016/S0896-6273(03)00032-1

B. Balci, G. Uyanik, P. Dincer, C. Gross, and T. Willer, An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker???Warburg syndrome (WWS) caused by a mutation in the POMT1 gene, Neuromuscular Disorders, vol.15, issue.4, pp.271-275, 2005.
DOI : 10.1016/j.nmd.2005.01.013

C. Collins and A. Diantonio, Synaptic development: insights from Drosophila, Current Opinion in Neurobiology, vol.17, issue.1, pp.35-42, 2007.
DOI : 10.1016/j.conb.2007.01.001

A. Perrimon and N. , Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, vol.118, pp.401-415, 1993.

W. Deng, M. Schneider, R. Frock, C. Castillejo-lopez, and E. Gaman, Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila, Development, vol.130, issue.1, pp.173-184, 2003.
DOI : 10.1242/dev.00199

S. Thibault, M. Singer, W. Miyazaki, B. Milash, and N. Dompe, A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac, Nature Genetics, vol.36, issue.3, pp.283-287, 2004.
DOI : 10.1038/ng1314

M. Schneider, A. Khalil, J. Poulton, C. Castillejo-lopez, and D. Egger-adam, Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization, Development, vol.133, issue.19, pp.3805-3815, 2006.
DOI : 10.1242/dev.02549

R. Lamb, R. Ward, L. Schweizer, and R. Fehon, Drosophila coracle, a Member of the Protein 4.1??Superfamily, Has Essential Structural Functions in the Septate Junctions and Developmental Functions in Embryonic and Adult Epithelial Cells, Molecular Biology of the Cell, vol.9, issue.12, pp.3505-3519, 1998.
DOI : 10.1091/mbc.9.12.3505

K. Chen, C. Merino, S. Sigrist, and D. Featherstone, The 4.1 Protein Coracle Mediates Subunit-Selective Anchoring of Drosophila Glutamate Receptors to the Postsynaptic Actin Cytoskeleton, Journal of Neuroscience, vol.25, issue.28, pp.6667-6675, 2005.
DOI : 10.1523/JNEUROSCI.1527-05.2005

URL : https://hal.archives-ouvertes.fr/in2p3-00582520

F. Pons, A. Robert, E. Fabbrizio, G. Hugon, and J. Califano, Utrophin localization in normal and dystrophin-deficient heart, Circulation, vol.90, issue.1, pp.369-374, 1994.
DOI : 10.1161/01.CIR.90.1.369

URL : https://hal.archives-ouvertes.fr/hal-00357323

S. Marrus, S. Portman, M. Allen, K. Moffat, and A. Diantonio, Differential Localization of Glutamate Receptor Subunits at the Drosophila Neuromuscular Junction, Journal of Neuroscience, vol.24, issue.6, pp.1406-1415, 2004.
DOI : 10.1523/JNEUROSCI.1575-03.2004

L. Fessler, A. Campbell, K. Duncan, and J. Fessler, Drosophila laminin: characterization and localization, The Journal of Cell Biology, vol.105, issue.5, pp.2383-2391, 1987.
DOI : 10.1083/jcb.105.5.2383

R. Fehon, I. Dawson, and S. Artavanis-tsakonas, A Drosophila homologue of membraneskeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene, Development, vol.120, pp.545-557, 1994.

R. Kittel, C. Wichmann, T. Rasse, W. Fouquet, and M. Schmidt, Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release, Science, vol.312, issue.5776, pp.1051-1054, 2006.
DOI : 10.1126/science.1126308

URL : http://hdl.handle.net/11858/00-001M-0000-0012-E4AA-9

S. Winder, The complexities of dystroglycan, Trends in Biochemical Sciences, vol.26, issue.2, pp.118-124, 2001.
DOI : 10.1016/S0968-0004(00)01731-X

H. Shcherbata, A. Yatsenko, L. Patterson, V. Sood, and U. Nudel, Dissecting muscle and neuronal disorders in a Drosophila model of muscular dystrophy, The EMBO Journal, vol.280, issue.2, pp.481-493, 2007.
DOI : 10.1038/sj.emboj.7601503

D. Wagh, T. Rasse, E. Asan, A. Hofbauer, and I. Schwenkert, Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila, Neuron, vol.49, issue.6, pp.833-844, 2006.
DOI : 10.1016/j.neuron.2006.02.008

M. Kanagawa, F. Saito, S. Kunz, T. Yoshida-moriguchi, and R. Barresi, Molecular recognition by LARGE is essential for expression of functional dystroglycan Conservation of components of the dystrophin complex in Drosophila Dystrophin is required for appropriate retrograde control of neurotransmitter release at the Drosophila neuromuscular junction, Cell FEBS Lett J Neurosci, vol.117, issue.26, pp.953-964, 2000.

M. Bartoli, M. Ramarao, and J. Cohen, Interactions of the Rapsyn RING-H2 Domain with Dystroglycan, Journal of Biological Chemistry, vol.276, issue.27, pp.24911-24917, 2001.
DOI : 10.1074/jbc.M103258200

S. Marchand, F. Stetzkowski-marden, and J. Cartaud, Differential targeting of components of the dystrophin complex to the postsynaptic membrane, Eur J Neurosci, vol.13, pp.221-229, 2001.

J. Pielage, R. Fetter, and G. Davis, neuromuscular junction, The Journal of Cell Biology, vol.401, issue.3, pp.491-503, 2006.
DOI : 10.1016/S0896-6273(00)80393-1

A. Diantonio, S. Petersen, M. Heckmann, and C. Goodman, Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction, J Neurosci, vol.19, pp.3023-3032, 1999.

D. Featherstone, E. Rushton, J. Rohrbough, F. Liebl, and J. Karr, An Essential Drosophila Glutamate Receptor Subunit That Functions in Both Central Neuropil and Neuromuscular Junction, Journal of Neuroscience, vol.25, issue.12, pp.3199-3208, 2005.
DOI : 10.1523/JNEUROSCI.4201-04.2005

S. Petersen, R. Fetter, J. Noordermeer, C. Goodman, and A. Diantonio, Genetic Analysis of Glutamate Receptors in Drosophila Reveals a Retrograde Signal Regulating Presynaptic Transmitter Release, Neuron, vol.19, issue.6, pp.1237-1248, 1997.
DOI : 10.1016/S0896-6273(00)80415-8

G. Qin, T. Schwarz, R. Kittel, A. Schmid, and T. Rasse, Four Different Subunits Are Essential for Expressing the Synaptic Glutamate Receptor at Neuromuscular Junctions of Drosophila, Journal of Neuroscience, vol.25, issue.12, pp.3209-3218, 2005.
DOI : 10.1523/JNEUROSCI.4194-04.2005

A. Prokop, M. Martin-bermudo, M. Bate, and N. Brown, Absence of PS Integrins or Laminin A Affects Extracellular Adhesion, but Not Intracellular Assembly, of Hemiadherens and Neuromuscular Junctions inDrosophilaEmbryos, Developmental Biology, vol.196, issue.1, pp.58-76, 1998.
DOI : 10.1006/dbio.1997.8830

A. Deconinck, J. Rafael, J. Skinner, S. Brown, and A. Potter, Utrophin-Dystrophin-Deficient Mice as a Model for Duchenne Muscular Dystrophy, Cell, vol.90, issue.4, pp.717-727, 1997.
DOI : 10.1016/S0092-8674(00)80532-2

R. Grady, H. Teng, M. Nichol, J. Cunningham, and R. Wilkinson, Skeletal and Cardiac Myopathies in Mice Lacking Utrophin and Dystrophin: A Model for Duchenne Muscular Dystrophy, Cell, vol.90, issue.4, pp.729-738, 1997.
DOI : 10.1016/S0092-8674(00)80533-4

F. Delhommeau, D. Venezia, N. Moriniere, M. , C. H. Maillet et al., Protein 4.1R expression in normal and dystrophic skeletal muscle, Comptes Rendus Biologies, vol.328, issue.1, pp.43-56, 2005.
DOI : 10.1016/j.crvi.2004.11.003

URL : https://hal.archives-ouvertes.fr/hal-00142135

C. Batchelor, J. Higginson, Y. Chen, C. Vanni, and A. Eva, Recruitment of Dbl by Ezrin and Dystroglycan Drives Membrane Proximal Cdc42 Activation and Filopodia Formation, Cell Cycle, vol.6, issue.3, pp.353-363, 2007.
DOI : 10.4161/cc.6.3.3819

H. Spence, Y. Chen, C. Batchelor, J. Higginson, and H. Suila, Ezrin-dependent regulation of the actin cytoskeleton by beta-dystroglycan, Hum Mol Genet, vol.13, p.16571668, 2004.

S. Moore, F. Saito, J. Chen, D. Michele, and M. Henry, Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy, Nature, vol.6, issue.6896, pp.422-425, 2002.
DOI : 10.1083/jcb.142.6.1461

G. Macleod, K. Zinsmaier, J. Sanes, S. Carlson, T. Scranton et al., Synaptic homeostasis on the fast track A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface, Neuron Nature J Biol Chem, vol.52, issue.275, pp.569-571, 2000.

. Large, and 3) immunoreactivity in yw CS control (C) and dg 1554 /dg 323 mutant larvae (D) The Dgex8 NMJ immunoreactivity almost completely disappears in the mutant condition whereas Discs- Large immunoreactivity is still present

G. Double and . (. Lam, larvae overexpressing DG-CGFP in the muscles with the 24B Gal4 driver In all panels of this figure, a single confocal optical section, which crosses the sarcolemma, is taken (D) The bottom right part of each panel corresponds the extracellular space and the up left part to the sarcoplasma. Lam colocalizes with DG-C-GFP patches at the sarcolemma (see arrows in A), Double staining against GFP (E, G) and Cora (E, F) in larvae overexpressing DG-C-GFP in the muscles with the 24B Gal4 driver. Cora colocalizes with DG-C-GFP patches at the sarcolemma (see arrows in E). (H-J) Double staining against Cora (H, I) and Lam (H, J)

/. Gal4 and . Larvae, which overexpress all CORA isoforms in muscles Muscle 4 NMJs are shown Single stainings for CORA and HRP are shown respectively in (2) and (3) Scale bar is 10 µm. (D) Immunoblot of proteins isolated from yw CS , cora 14 /cora k08713 and P{EPgy2}cora This blot was stained with the polyclonal Guinea-pig anti-CORA antibody. The wild-type larvae display 2 bands of about 210 and 240 kDa. The signal intensity is clearly reduced in cora hypomorph mutants, whereas it is enhanced when CORA is overexpressed with the 24B-Gal4 driver. A second staining of the same blot with an anti-Tubulin antibody indicated that the protein loading was similar in all lanes. Relative molecular mass size markers (kDa) are indicated at right. (E) Triple staining for HRP (blue), CORA (red) and alpha-Spectrin (?-SPEC; green) on WT third instar larvae (E1). A muscle 4 NMJ is shown. Single stainings for HRP, CORA and alpha-Spectrin are displayed respectively in E2, Supplemental Figure 3: Cora is concentrated at the third instar larval NMJ and colocalize with Spectrin. Double staining for CORA (red) and HRP (blue)(1) on (A) WT larvae 24B Gal4/+ larvae, p.2