G. Assmann and J. Nofer, Atheroprotective Effects of High-Density Lipoproteins, Annual Review of Medicine, vol.54, issue.1, pp.321-341, 2003.
DOI : 10.1146/annurev.med.54.101601.152409

@. Kontush, A. Chapman, and M. , Functionally defective HDL: a new therapeutic target at the crossroads of dyslipidemia, inflammation and atherosclerosis, Pharmacol Rev, vol.3, pp.342-374, 2006.

@. Nobecourt, E. Jacqueminet, S. Hansel, and B. , Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia, Diabetologia, vol.290, issue.3, pp.529-538, 2005.
DOI : 10.1007/s00125-004-1655-5

B. Hansel, P. Giral, and E. Nobecourt, Metabolic Syndrome Is Associated with Elevated Oxidative Stress and Dysfunctional Dense High-Density Lipoprotein Particles Displaying Impaired Antioxidative Activity, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.10, pp.4963-4971, 2004.
DOI : 10.1210/jc.2004-0305

@. Lewis, G. Rader, and D. , New Insights Into the Regulation of HDL Metabolism and Reverse Cholesterol Transport, Circulation Research, vol.96, issue.12, pp.1221-1232, 2005.
DOI : 10.1161/01.RES.0000170946.56981.5c

L. Goff, W. Guerin, M. Chapman, and M. , Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia, Pharmacology & Therapeutics, vol.101, issue.1, pp.17-38, 2004.
DOI : 10.1016/j.pharmthera.2003.10.001

W. Khovidhunkit, M. Kim, and R. Memon, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host, The Journal of Lipid Research, vol.45, issue.7, pp.1169-1196, 2004.
DOI : 10.1194/jlr.R300019-JLR200

O. Brien, K. Chait, and A. , Serum amyloid A: the " other " inflammatory protein, Curr Atheroscler Rep, vol.8, pp.62-68, 2006.

P. Ridker, C. Hennekens, J. Buring, and N. Rifai, C-Reactive Protein and Other Markers of Inflammation in the Prediction of Cardiovascular Disease in Women, New England Journal of Medicine, vol.342, issue.12, pp.836-843, 2000.
DOI : 10.1056/NEJM200003233421202

R. Choudhury and F. Leyva, C-Reactive Protein, Serum Amyloid A Protein, and Coronary Events, Circulation, vol.100, issue.15, pp.65-66, 1999.
DOI : 10.1161/01.CIR.100.15.e65

A. Ceriello and E. Motz, Is Oxidative Stress the Pathogenic Mechanism Underlying Insulin Resistance, Diabetes, and Cardiovascular Disease? The Common Soil Hypothesis Revisited, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.5, pp.816-823, 2004.
DOI : 10.1161/01.ATV.0000122852.22604.78

@. Shao, B. Oda, M. Oram, J. Heinecke, and J. , Myeloperoxidase: an inflammatory enzyme for generating dysfunctional high density lipoprotein, Current Opinion in Cardiology, vol.21, issue.4, pp.322-328, 2006.
DOI : 10.1097/01.hco.0000231402.87232.aa

R. Hermo, C. Mier, and M. Mazzotta, Excellent review of recent studies, primarily from the authors' laboratory , of mechanisms leading to the generation of functionally deficient HDL by myeloperoxidase. 14 Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients, Clin Chem Lab Med, vol.43, pp.601-606, 2005.

C. Calvo, G. Ponsin, and F. Berthezene, Characterization of the non enzymatic glycation of high density lipoprotein in diabetic patients, Diabet Metab, vol.14, pp.264-269, 1988.

B. Igau, G. Castro, and V. Clavey, In Vivo Glucosylated LpA-I Subfraction : Evidence for Structural and Functional Alterations, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.11, pp.2830-2836, 1997.
DOI : 10.1161/01.ATV.17.11.2830

P. Durrington, B. Mackness, and M. Mackness, Paraoxonase and Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.21, issue.4, pp.473-480, 2001.
DOI : 10.1161/01.ATV.21.4.473

M. Boemi, I. Leviev, and C. Sirolla, Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives; influence on the ability of HDL to protect LDL from oxidation, Atherosclerosis, vol.155, issue.1, pp.229-235, 2001.
DOI : 10.1016/S0021-9150(00)00556-6

G. Ferretti, T. Bacchetti, and D. Busni, Protective Effect of Paraoxonase Activity in High-Density Lipoproteins against Erythrocyte Membranes Peroxidation: A Comparison between Healthy Subjects and Type 1 Diabetic Patients, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2957-2962, 2004.
DOI : 10.1210/jc.2003-031897

S. Karabina, A. Lehner, and E. Frank, Oxidative inactivation of paraoxonase???implications in diabetes mellitus and atherosclerosis, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1725, issue.2, pp.213-221, 2005.
DOI : 10.1016/j.bbagen.2005.07.005

C. Hedrick, S. Thorpe, and M. Fu, Glycation impairs high-density lipoprotein function, Diabetologia, vol.43, issue.3, pp.312-320, 2000.
DOI : 10.1007/s001250050049

G. Ferretti, T. Bacchetti, and C. Marchionni, Effect of glycation of high density lipoproteins on their physicochemical properties and on paraoxonase activity, Acta Diabetologica, vol.38, issue.4, pp.163-169, 2001.
DOI : 10.1007/s592-001-8074-z

B. Van-lenten, M. Navab, and D. Shih, The Role of High-Density Lipoproteins in Oxidation and Inflammation, Trends in Cardiovascular Medicine, vol.11, issue.3-4, pp.155-161, 2001.
DOI : 10.1016/S1050-1738(01)00095-0

S. Borggreve, D. Vries, R. Dullaart, and R. , Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins, European Journal of Clinical Investigation, vol.20, issue.12, pp.1051-1069, 2003.
DOI : 10.1074/jbc.273.9.5033

J. Bagdade, W. Buchanan, T. Kuusi, and M. Taskinen, Persistent abnormalities in lipoprotein composition in noninsulin- dependent diabetes after intensive insulin therapy, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.10, issue.2, pp.232-239, 1990.
DOI : 10.1161/01.ATV.10.2.232

W. Pruzanski, E. Stefanski, and F. De-beer, Why Is HDL Functionally Deficient in Type 2 Diabetes? Kontush and Chapman 59 27 Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins, J Lipid Res, vol.41, pp.1035-1047, 2000.

M. Iwase, K. Sonoki, and N. Sasaki, Lysophosphatidylcholine contents in plasma LDL in patients with type 2 diabetes mellitus: Relation with lipoprotein-associated phospholipase A(2) and effects of simvastatin treatment [Epub ahead of print.] 29. Watala C, Winocour PD: The relationship of chemical modification of membrane proteins and plasma lipoproteins to reduced membrane fluidity of erythrocytes from diabetic subjects, Atherosclerosis Eur J Clin Chem Clin Biochem, vol.30, pp.513-519, 1992.

B. Ansell, M. Navab, and S. Hama, Inflammatory/Antiinflammatory Properties of High-Density Lipoprotein Distinguish Patients From Control Subjects Better Than High-Density Lipoprotein Cholesterol Levels and Are Favorably Affected by Simvastatin Treatment, Circulation, vol.108, issue.22, pp.2751-2756, 2003.
DOI : 10.1161/01.CIR.0000103624.14436.4B

E. Cavallero, F. Brites, and B. Delfly, Abnormal Reverse Cholesterol Transport in Controlled Type II Diabetic Patients : Studies on Fasting and Postprandial LpA-I Particles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.15, issue.12, pp.2130-2135, 1995.
DOI : 10.1161/01.ATV.15.12.2130

F. Brites, C. Bonavita, D. Geitere, and C. , Alterations in the main steps of reverse cholesterol transport in male patients with primary hypertriglyceridemia and low HDL-cholesterol levels, Atherosclerosis, vol.152, issue.1, pp.181-192, 2000.
DOI : 10.1016/S0021-9150(99)00452-9

M. Syvanne, G. Castro, and C. Dengremont, Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein, Atherosclerosis, vol.127, issue.2, pp.245-253, 1996.
DOI : 10.1016/S0021-9150(96)05962-X

C. Fievet, N. Theret, and N. Shojaee, Apolipoprotein A-I-Containing Particles and Reverse Cholesterol Transport in IDDM, Diabetes, vol.41, issue.Supplement_2, pp.4181-85, 1992.
DOI : 10.2337/diab.41.2.S81

@. Hoang, A. Murphy, A. Coughlan, and M. , Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties, Diabetologia, vol.53, issue.Suppl, pp.1770-1779, 2007.
DOI : 10.1007/s00125-007-0718-9

P. Duell, J. Oram, and E. Bierman, Nonenzymatic Glycosylation of HDL and Impaired HDL-Receptor-Mediated Cholesterol Efflux, Diabetes, vol.40, issue.3, pp.377-384, 1991.
DOI : 10.2337/diab.40.3.377

D. Rashduni, V. Rifici, S. Schneider, and A. Khachadurian, Glycation of high-density lipoprotein does not increase its susceptibility to oxidation or diminish its cholesterol efflux capacity, Metabolism, vol.48, issue.2, pp.139-143, 1999.
DOI : 10.1016/S0026-0495(99)90024-0

D. Sparks, W. Davidson, S. Lund-katz, and M. Phillips, Effects of the Neutral Lipid Content of High Density Lipoprotein on Apolipoprotein A-I Structure and Particle Stability, Journal of Biological Chemistry, vol.270, issue.45, pp.26910-26917, 1995.
DOI : 10.1074/jbc.270.45.26910

P. Yancey, M. De-la-llera-moya, and S. Swarnakar, High Density Lipoprotein Phospholipid Composition Is a Major Determinant of the Bi-directional Flux and Net Movement of Cellular Free Cholesterol Mediated by Scavenger Receptor BI, Journal of Biological Chemistry, vol.275, issue.47
DOI : 10.1074/jbc.M006924200

A. Artl, G. Marsche, and S. Lestavel, Role of Serum Amyloid A During Metabolism of Acute-Phase HDL by Macrophages, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.3, pp.763-772, 2000.
DOI : 10.1161/01.ATV.20.3.763

M. Gowri, D. Van-der-westhuyzen, S. Bridges, and J. Anderson, Decreased Protection by HDL From Poorly Controlled Type 2 Diabetic Subjects Against LDL Oxidation May Be Due to the Abnormal Composition of HDL, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.19, issue.9, pp.2226-2233, 1999.
DOI : 10.1161/01.ATV.19.9.2226

M. Lakshman, C. Gottipati, and S. Narasimhan, Inverse correlation of serum paraoxonase and homocysteine thiolactonase activities and antioxidant capacity of high-density lipoprotein with the severity of cardiovascular disease in persons with type 2 diabetes mellitus, Metabolism, vol.55, issue.9, pp.1201-1206, 2006.
DOI : 10.1016/j.metabol.2006.06.001

S. Sanguinetti, F. Brites, and V. Fasulo, HDL oxidability and its protective effect against LDL oxidation in Type 2 diabetic patients, Diabetes Nutr Metab, vol.14, pp.27-36, 2001.

S. Maxwell, G. Holm, G. Bondjers, and O. Wiklund, Comparison of antioxidant activity in lipoprotein fractions from insulin-dependent diabetics and healthy controls, Atherosclerosis, vol.129, issue.1, pp.89-96, 1997.
DOI : 10.1016/S0021-9150(96)06033-9

K. Julier, M. Mackness, J. Dean, and P. Durrington, Susceptibility of low- and high-density lipoproteins from diabetic subjects to in vitro oxidative modification, Diabetic Medicine, vol.35, issue.Suppl., pp.415-423, 1999.
DOI : 10.1046/j.1464-5491.1999.00089.x

A. Kontush, E. De-faria, S. Chantepie, and M. Chapman, Antioxidative Activity of HDL Particle Subspecies Is Impaired in Hyperalphalipoproteinemia: Relevance of Enzymatic and Physicochemical Properties, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.3, pp.526-533, 2004.
DOI : 10.1161/01.ATV.0000118276.87061.00

M. Mastorikou, M. Mackness, and B. Mackness, Defective Metabolism of Oxidized Phospholipid by HDL From People With Type 2 Diabetes, Diabetes, vol.55, issue.11, pp.3099-3103, 2006.
DOI : 10.2337/db06-0723

@. Watanabe, J. Chou, K. Liao, and J. , Differential Association of Hemoglobin with Proinflammatory High Density Lipoproteins in Atherogenic/Hyperlipidemic Mice: A NOVEL BIOMARKER OF ATHEROSCLEROSIS, Journal of Biological Chemistry, vol.282, issue.32, pp.23698-23707, 2007.
DOI : 10.1074/jbc.M702163200

R. Salvayre, N. Auge, and H. Benoist, Oxidized low-density lipoprotein-induced apoptosis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1585, issue.2-3, pp.213-221, 2002.
DOI : 10.1016/S1388-1981(02)00343-8

A. Abderrahmani, G. Niederhauser, and D. Favre, Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells, Diabetologia, vol.21, issue.Suppl 2, pp.1304-1314, 2007.
DOI : 10.1007/s00125-007-0642-z

@. De-souza, J. Vindis, C. Hansel, and B. , Metabolic syndrome features small, apolipoprotein A-I-poor, triglyceride-rich HDL3 particles with defective anti-apoptotic activity [Epub ahead of print.] First report on the deficient antiapoptotic activity of HDL in MetS Glycated high-density lipoprotein induces apoptosis of endothelial cells via a mitochondrial dysfunction, Atherosclerosis Biochem Biophys Res Commun, vol.54, issue.287, pp.714-720, 2001.

@. Persegol, L. Verges, B. Foissac, and M. , Inability of HDL from type 2 diabetic patients to counteract the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation, Diabetologia, vol.42, issue.Suppl 2, pp.1380-1386, 2006.
DOI : 10.1007/s00125-006-0244-1

@. Persegol, L. Verges, B. Gambert, P. Duvillard, and L. , Inability of HDL from abdominally obese subjects to counteract the inhibitory effect of oxidized LDL on vasorelaxation, The Journal of Lipid Research, vol.48, issue.6, pp.1396-1401, 2007.
DOI : 10.1194/jlr.M600309-JLR200

J. Kanter, F. Johansson, R. Leboeuf, and K. Bornfeldt, this publication reinforces the association between the accumulation of TG-enriched HDL and the deficiency of HDL vasodilatory activity in obese subjects. Furthermore, the data allow one to distinguish between the effects of hyperglycemia and hypertriglyceridemia on HDL functionality Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques?, Circ Res, vol.57, issue.100, pp.769-781, 2007.

M. Chapman, Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease, Pharmacology & Therapeutics, vol.111, issue.3, pp.893-908, 2006.
DOI : 10.1016/j.pharmthera.2006.02.003

A. Tall, L. Yvan-charvet, and N. Wang, The Failure of Torcetrapib: Was it the Molecule or the Mechanism?, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.257-260, 2007.
DOI : 10.1161/01.ATV.0000256728.60226.77