M. Atkinson and N. Maclaren, The pathogenesis of insulin-dependent diabetes mellitus, N Engl J Med, vol.331, pp.1428-1436, 1994.

R. Defronzo and . Lilly-lecture, The Triumvirate: ??-Cell, Muscle, Liver: A Collusion Responsible for NIDDM, Diabetes, vol.37, issue.6, pp.667-687, 1987.
DOI : 10.2337/diab.37.6.667

A. Rosenbloom and . Obesity, Obesity, Insulin Resistance, ??-Cell Autoimmunity, and the Changing Clinical Epidemiology of Childhood Diabetes, Diabetes Care, vol.26, issue.10, pp.2954-2956, 2003.
DOI : 10.2337/diacare.26.10.2954

R. Turner, I. Stratton, V. Horton, and . Ukpds, UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes, The Lancet, vol.350, issue.9087
DOI : 10.1016/S0140-6736(97)03062-6

R. Leslie and C. Delli, Age-Dependent Influences on the Origins of Autoimmune Diabetes: Evidence and Implications, Diabetes, vol.53, issue.12, pp.3033-3040, 2004.
DOI : 10.2337/diabetes.53.12.3033

C. Greenbaum, Insulin resistance in type 1 diabetes, Diabetes/Metabolism Research and Reviews, vol.24, issue.3, pp.192-200, 2002.
DOI : 10.1002/dmrr.291

S. Fourlanos, P. Narendran, and G. Byrnes, Insulin resistance is a risk factor for progression to Type 1 diabetes, Diabetologia, vol.48, issue.10, pp.1661-1667, 2004.
DOI : 10.1007/s00125-004-1507-3

E. Schober and G. Schernthaner, Beta-cell function recovery is not the only factor responsible for remission in type I diabetics: evaluation of C-peptide secretion in diabetic children after first metabolic recompensation and at partial remission phase, Journal of Endocrinological Investigation, vol.1, issue.32, pp.507-512, 1984.
DOI : 10.1007/BF03348458

H. Yki-jarvinen and V. Koivisto, Natural Course of Insulin Resistance in Type I Diabetes, New England Journal of Medicine, vol.315, issue.4, pp.224-230, 1986.
DOI : 10.1056/NEJM198607243150404

H. Yki-jarvinen and V. Koivisto, Insulin Sensitivity in Newly Diagnosed Type 1 Diabetics after Ketoacidosis and after Three Months of Insulin Therapy*, The Journal of Clinical Endocrinology & Metabolism, vol.59, issue.3, pp.371-378, 1984.
DOI : 10.1210/jcem-59-3-371

I. Hramiak and J. Dupre, Determinants of Clinical Remission in Recent-Onset IDDM, Diabetes Care, vol.16, issue.1, pp.125-132, 1993.
DOI : 10.2337/diacare.16.1.125

. Gottlieb, Diabetes in offspring and siblings of juvenile- and maturity-onset-type diabetics, Journal of Chronic Diseases, vol.33, issue.6, pp.331-339, 1980.
DOI : 10.1016/0021-9681(80)90042-9

G. Dahlquist, L. Blom, and T. Tuvemo, The Swedish childhood diabetes study ? results from a nine year case register and a one year case-referent study indicating that Type 1 (insulin-dependent) diabetes mellitus is associated with both Type 2 (non-insulin-dependent) diabetes mellitus and autoimmune disorders, Diabetologia, vol.32, issue.1, pp.2-6, 1989.
DOI : 10.1007/BF00265396

S. Rich, S. Panter, and F. Goetz, Shared genetic susceptibility of Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus: contributions of HLA and haptoglobin, Diabetologia, vol.83, issue.5, pp.350-355, 1991.
DOI : 10.1007/BF00405008

H. Li and E. Lindholm, Almgren P Possible human leukocyte antigen-mediated genetic interaction between type 1 and type 2 Diabetes, J Clin Endocrinol Metab, vol.86, pp.574-582, 2001.

J. Pickup and M. Mattock, NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X, Diabetologia, vol.23, issue.2, pp.1286-1292, 1997.
DOI : 10.1007/s001250050822

K. Feingold and C. Grunfeld, Role of Cytokines in Inducing Hyperlipidemia, Diabetes, vol.41, issue.Supplement_2, pp.97-101, 1992.
DOI : 10.2337/diab.41.2.S97

C. Grunfeld, C. Zhao, and J. Fuller, Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters., Journal of Clinical Investigation, vol.97, issue.9, pp.2152-2157, 1996.
DOI : 10.1172/JCI118653

E. Bonifacio and U. Mollenhauer, C-reactive protein concentration is not related to islet autoimmunity status in offspring of parents with type 1 diabetes, Clinical Immunology, vol.115, issue.2, pp.173-177, 2005.
DOI : 10.1016/j.clim.2005.01.004

S. Basu, A. Larsson, and J. Vessby, Type 1 Diabetes Is Associated With Increased Cyclooxygenase- and Cytokine-Mediated Inflammation, Diabetes Care, vol.28, issue.6, pp.1371-1375, 2005.
DOI : 10.2337/diacare.28.6.1371

M. Waris and J. Koskinen, Onset of beta-cell autoimmunity is not associated with elevated concentration of C-reactive protein in children at genetic risk for Type 1 diabetes, Diabetic Medicine, vol.25, issue.8, pp.1123-1124, 2005.
DOI : 10.1016/j.ab.2004.02.029

M. Yngen, C. Ostenson, and H. Hu, Enhanced P-selectin expression and increased soluble CD40 Ligand in patients with Type 1 diabetes mellitus and microangiopathy: evidence for platelet hyperactivity and chronic inflammation, Diabetologia, vol.47, pp.537-540, 2004.

M. Schram and N. Chaturvedi, Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes?the EURODIAB Prospective Complications Study, Diabetologia, vol.48, issue.2, pp.370-378, 2005.
DOI : 10.1007/s00125-004-1628-8

K. Gillespie, S. Bain, and A. Barnett, The rising incidence of childhood type 1 diabetes and reduced contribution of high-risk HLA haplotypes, The Lancet, vol.364, issue.9446, pp.1699-1700, 2004.
DOI : 10.1016/S0140-6736(04)17357-1

R. Hermann, M. Knip, and R. Veijola, Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes???indication of an increased environmental pressure?, Diabetologia, vol.6, issue.3, pp.420-425, 2003.
DOI : 10.1093/hmg/6.8.1275

S. Kahn, The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes, Diabetologia, vol.71, issue.1, pp.3-19, 2003.
DOI : 10.1016/S0140-6736(02)08905-5

H. Kolb and . Mandrup-poulsen, An immune origin of type 2 diabetes?, Diabetologia, vol.45, issue.Suppl, pp.1038-1050, 2005.
DOI : 10.1007/s00125-005-1764-9

M. Pietropaolo, E. Barinas-mitchell, and S. Pietropaolo, Evidence of islet cell autoimmunity in elderly patients with type 2 diabetes, Diabetes, vol.49, issue.1, pp.32-38, 2000.
DOI : 10.2337/diabetes.49.1.32

V. Pittoni and G. Valesini, The clearance of apoptotic cells: implications for autoimmunity, Autoimmunity Reviews, vol.1, issue.3, pp.154-161, 2002.
DOI : 10.1016/S1568-9972(02)00032-0

P. Zimmet, T. Tuomi, and I. Mackay, Latent Autoimmune Diabetes Mellitus in Adults (LADA): the Role of Antibodies to Glutamic Acid Decarboxylase in Diagnosis and Prediction of Insulin Dependency, Diabetic Medicine, vol.1, issue.suppl 1, pp.299-303, 1994.
DOI : 10.1111/j.1464-5491.1994.tb00275.x

P. Zimmet, R. Turner, and D. Mccarty, Crucial points at diagnosis. Type 2 diabetes or slow type 1 diabetes, Diabetes Care, vol.22, issue.2, pp.59-64, 1999.

A. Carlsson, G. Sundkvist, and L. Groop, Insulin and glucagon secretion in patients with slowly progressing autoimmune diabetes (LADA), J Clin Endocrinol Metab, vol.85, pp.76-80, 2000.

C. Terhorst, A. Van, and K. Leclair, Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10, Cell, vol.23, issue.3, pp.771-780, 1981.
DOI : 10.1016/0092-8674(81)90441-4

D. Jackson and J. Bell, Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation, J Immunol, vol.144, pp.2811-2815, 1990.

R. Mallone, A. Funaro, and M. Zubiaur, Signaling through CD38 induces NK cell activation, International Immunology, vol.13, issue.4, pp.397-409, 2001.
DOI : 10.1093/intimm/13.4.397

URL : http://intimm.oxfordjournals.org/cgi/content/short/13/4/397

E. Zocchi, L. Franco, and L. Guida, A Single Protein Immunologically Identified as CD38 Displays NAD+ Glycohydrolase, ADP-Ribosyl Cyclase and Cyclic ADP-Ribose Hydrolase Activities at the Outer Surface of Human Erythrocytes, Biochemical and Biophysical Research Communications, vol.196, issue.3, pp.1459-1465, 1993.
DOI : 10.1006/bbrc.1993.2416

G. Ramaschi and M. Torti, Festetics ET Expression of cyclic ADP-ribose-synthetizing CD38 molecule on human platelet membrane, Blood, vol.87, pp.2308-2313, 1996.

S. Zupo and E. Rugari, CD38 signaling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells, European Journal of Immunology, vol.23, issue.5, pp.1218-1222, 1994.
DOI : 10.1002/eji.1830240532

M. Kumagai, E. Coustan-smith, and D. Murray, Ligation of CD38 suppresses human B lymphopoiesis, Journal of Experimental Medicine, vol.181, issue.3, pp.1101-1110, 1995.
DOI : 10.1084/jem.181.3.1101

S. Deaglio, R. Mallone, and G. Baj, Human CD38 and its ligand CD31 define a unique lamina propria T lymphocyte signaling pathway, The FASEB Journal, vol.15, pp.580-582, 2001.
DOI : 10.1096/fj.00-0522fje

J. Fernandez, S. Deaglio, and D. Donati, Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues, J Biol Regul Homeost Agents, vol.12, pp.81-91, 1998.

R. Mallone, E. Ortolan, S. Pinach, and . Anti, characterisation in new-onset type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies, Diabetologia, vol.45, pp.1667-1677, 2002.

K. Nata, T. Takamura, and T. Karasawa, Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing, Gene, vol.186, issue.2, pp.285-292, 1997.
DOI : 10.1016/S0378-1119(96)00723-8

R. Mallone, S. Ferrua, and M. Morra, Characterization of a CD38-like 78-kilodalton soluble protein released from B cell lines derived from patients with X-linked agammaglobulinemia., Journal of Clinical Investigation, vol.101, issue.12, pp.2821-2830, 1998.
DOI : 10.1172/JCI1068

S. Umar, F. Malavasi, and K. Mehta, Post-translational Modification of CD38 Protein into a High Molecular Weight Form Alters Its Catalytic Properties, Journal of Biological Chemistry, vol.271, issue.27, pp.15922-15927, 1996.
DOI : 10.1074/jbc.271.27.15922

S. Anderton and . Post, Post-translational modifications of self antigens: implications for autoimmunity, Current Opinion in Immunology, vol.16, issue.6, pp.753-758, 2004.
DOI : 10.1016/j.coi.2004.09.001

F. Malavasi and A. Funaro, Human CD38: a glycoprotein in search of a function, Immunology Today, vol.15, issue.3, pp.95-97, 1994.
DOI : 10.1016/0167-5699(94)90148-1

E. Ferrero and F. Malavasi, The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38, J Leukoc Biol, vol.65, pp.151-161, 1999.

S. Deaglio, R. Mallone, and G. Baj, CD38/CD31, a Receptor/Ligand System Ruling Adhesion and Signaling in Human Leukocytes, Chem Immunol, vol.75, pp.99-120, 2000.
DOI : 10.1159/000058765

S. Deaglio, M. Morra, R. Mallone, and C. Human, ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member, J Immunol, vol.160, pp.395-402, 1998.

C. Ausiello, S. Ramoni, and C. , Secretion of IFN-??, IL-6, Granulocyte-Macrophage Colony-Stimulating Factor and IL-10 Cytokines after Activation of Human Purified T Lymphocytes upon CD38 Ligation, Cellular Immunology, vol.173, issue.2, pp.192-197, 1996.
DOI : 10.1006/cimm.1996.0267

M. Howard and J. Grimaldi, Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38, Science, vol.262, issue.5136, pp.1056-1059, 1993.
DOI : 10.1126/science.8235624

S. Takasawa and N. K. , Cyclic ADP-ribose in insulin secretion from pancreatic beta cells, Science, vol.259, issue.5093, pp.370-373, 1993.
DOI : 10.1126/science.8420005

I. Kato, S. Takasawa, and A. Akabane, Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice, J Biol Chem, vol.270, pp.30045-30050, 1995.

I. Kato and Y. Yamamoto, Fujimura M CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, Ca2 i, and insulin secretion

H. Okamoto, S. Takasawa, and N. K. , The CD38-cyclic ADP-ribose signalling system in insulin secretion: molecular basis and clinical implications, Diabetologia, vol.40, issue.12, pp.1485-1491, 1997.
DOI : 10.1007/s001250050854

S. Takasawa, A. Tohgo, and N. Noguchi, Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP, J Biol Chem, vol.268, pp.26052-26054, 1993.

F. Ikehata, J. Satoh, and N. K. , Autoantibodies against CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) that impair glucose-induced insulin secretion in noninsulin- dependent diabetes patients., Journal of Clinical Investigation, vol.102, issue.2, pp.395-401, 1998.
DOI : 10.1172/JCI1656

C. Pupilli, S. Giannini, and P. Marchetti, Autoantibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in Caucasian patients with diabetes: effects on insulin release from human islets, Diabetes, vol.48, issue.12, pp.2309-2315, 1999.
DOI : 10.2337/diabetes.48.12.2309

C. Munshi and K. Fryxell, [29] Large-scale production of human CD38 in yeast by fermentation, Methods Enzymol, vol.280, pp.318-330, 1997.
DOI : 10.1016/S0076-6879(97)80123-1

R. Mallone, E. Ortolan, and G. Baj, Autoantibody Response to CD38 in Caucasian Patients With Type 1 and Type 2 Diabetes: Immunological and Genetic Characterization, Diabetes, vol.50, issue.4, pp.752-762, 2001.
DOI : 10.2337/diabetes.50.4.752

A. Antonelli, G. Baj, and P. Marchetti, Human Anti-CD38 Autoantibodies Raise Intracellular Calcium and Stimulate Insulin Release in Human Pancreatic Islets, Diabetes, vol.50, issue.5, pp.985-991, 2001.
DOI : 10.2337/diabetes.50.5.985

K. Savola, E. Sabbah, and P. Kulmala, Autoantibodies associated with Type I diabetes mellitus persist after diagnosis in children, Diabetologia, vol.41, issue.11, pp.1293-1297, 1998.
DOI : 10.1007/s001250051067

A. Antonelli, P. Fallahi, and C. Nesti, Anti-CD38 autoimmunity in patients with chronic autoimmune thyroiditis or Graves' disease, Clinical & Experimental Immunology, vol.697, issue.Suppl. 2, pp.426-431, 2001.
DOI : 10.1046/j.1365-2249.2001.01683.x

E. Kawasaki, N. Abiru, and M. Yano, Autoantibodies to Glutamic Acid Decarboxylase in Patients with Autoimmune Thyroid Disease: Relation to Competitive Insulin Autoantibodies, Journal of Autoimmunity, vol.8, issue.5, pp.633-643, 1995.
DOI : 10.1006/jaut.1995.0047

B. Hallengren and A. Falorni, Islet cell and glutamic acid decarboxylase antibodies in hyperthyroid patients: at diagnosis and following treatment, Journal of Internal Medicine, vol.239, issue.1, pp.63-68, 1996.
DOI : 10.1046/j.1365-2796.1996.417758000.x

D. Maugendre and F. Verite, Anti-pancreatic autoimmunity and Graves' disease: study of a cohort of 600 Caucasian patients, European Journal of Endocrinology, vol.137, issue.5, pp.503-510, 1997.
DOI : 10.1530/eje.0.1370503

S. Martin, D. Wolf-eichbaum, and G. Duinkerken, Development of Type 1 Diabetes despite Severe Hereditary B-Cell Deficiency, New England Journal of Medicine, vol.345, issue.14, pp.1036-1040, 2001.
DOI : 10.1056/NEJMoa010465

H. Reijonen and T. Daniels, GAD65-specific autoantibodies enhance the presentation of an immunodominant T-cell epitope from GAD65, Diabetes, vol.49, issue.10, pp.1621-1626, 2000.
DOI : 10.2337/diabetes.49.10.1621

J. Jaume and S. Parry, Suppressive Effect of Glutamic Acid Decarboxylase 65-Specific Autoimmune B Lymphocytes on Processing of T Cell Determinants Located Within the Antibody Epitope, The Journal of Immunology, vol.169, issue.2, pp.665-672, 2002.
DOI : 10.4049/jimmunol.169.2.665

V. Grill and A. Bjorklund, Overstimulation and beta-cell function, Diabetes, vol.50, issue.Supplement 1, pp.122-124, 2001.
DOI : 10.2337/diabetes.50.2007.S122

J. Chandra and B. Zhivotovsky, Role of apoptosis in pancreatic beta-cell death in diabetes, Diabetes, vol.50, issue.Supplement 1, pp.44-47, 2001.
DOI : 10.2337/diabetes.50.2007.S44

P. Marchetti, A. Antonelli, and R. Lupi, Prolonged in vitro exposure to autoantibodies against CD38 impairs the function and survival of human pancreatic islets) S474-S477 82.. Lanzavecchia A How can cryptic epitopes trigger autoimmunity?, Diabetes. J Exp Med, vol.51, issue.181, pp.1945-1948, 1995.

P. Simitsek and D. Campbell, Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants, Journal of Experimental Medicine, vol.181, issue.6, pp.1957-1963, 1995.
DOI : 10.1084/jem.181.6.1957