R. Zaidel-bar, C. Ballestrem, Z. Kam, and B. Geiger, Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells, Journal of Cell Science, vol.116, issue.22, pp.4605-4613, 2003.
DOI : 10.1242/jcs.00792

L. Tranqui, Y. Usson, C. Marie, and M. R. Block, Adhesion of CHO cells to fibronectin is mediated by functionally and structurally distinct adhesion plaques, J. Cell Sci, vol.106, pp.377-387, 1993.

Y. Zhang, K. Chen, L. Guo, and C. Wu, Characterization of PINCH-2, a New Focal Adhesion Protein That Regulates the PINCH-1-ILK Interaction, Cell Spreading, and Migration, Journal of Biological Chemistry, vol.277, issue.41, pp.38328-38338, 2002.
DOI : 10.1074/jbc.M205576200

L. Zeng, X. Si, W. P. Yu, H. T. Le, K. P. Ng et al., PTP?? regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration, The Journal of Cell Biology, vol.16, issue.1, pp.137-146, 2003.
DOI : 10.1038/359336a0

C. D. Nobes and A. Hall, Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, vol.81, issue.1, pp.53-62, 1995.
DOI : 10.1016/0092-8674(95)90370-4

A. J. Ridley, H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell, vol.70, issue.3, pp.401-410, 1992.
DOI : 10.1016/0092-8674(92)90164-8

L. M. Machesky and R. H. , Scar1 and the related Wiskott???Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex, Current Biology, vol.8, issue.25, pp.1347-1356, 1998.
DOI : 10.1016/S0960-9822(98)00015-3

. Kirschner, The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly, Cell, vol.97, pp.221-231, 1999.

T. E. Stradal and G. Scita, Protein complexes regulating Arp2/3-mediated actin assembly, Current Opinion in Cell Biology, vol.18, issue.1, pp.4-10, 2006.
DOI : 10.1016/j.ceb.2005.12.003

M. Krause, J. E. Bear, J. J. Loureiro, and F. B. Gertler, The Ena/VASP enigma, Journal of Cell Science, vol.115, issue.24, pp.4721-4726, 2002.
DOI : 10.1242/jcs.00218

URL : http://jcs.biologists.org/cgi/content/short/115/24/4721

O. Y. Maly, J. A. Chaga, G. G. Cooper, F. B. Borisy, and . Gertler, Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility, Cell, vol.109, pp.509-521, 2002.

M. A. Partridge and E. E. Marcantonio, Initiation of Attachment and Generation of Mature Focal Adhesions by Integrin-containing Filopodia in Cell Spreading, Molecular Biology of the Cell, vol.17, issue.10, pp.4237-4248, 2006.
DOI : 10.1091/mbc.E06-06-0496

C. G. Galbraith, K. M. Yamada, and J. A. Galbraith, Polymerizing Actin Fibers Position Integrins Primed to Probe for Adhesion Sites, Science, vol.315, issue.5814, pp.992-995, 2007.
DOI : 10.1126/science.1137904

R. W. Davenport, P. Dou, V. Rehder, and S. B. Kater, A sensory role for neuronal growth cone filopodia, Nature, vol.361, issue.6414, pp.721-724, 1993.
DOI : 10.1038/361721a0

A. J. Koleske, Do Filopodia Enable the Growth Cone to Find Its Way?, Science Signaling, vol.2003, issue.183, p.20, 2003.
DOI : 10.1126/stke.2003.183.pe20

. Borisy, Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end, Cell, vol.118, pp.363-373, 2004.

T. M. Svitkina, E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S. Kojima et al., Mechanism of filopodia initiation by reorganization of a dendritic network, The Journal of Cell Biology, vol.4, issue.3, pp.409-421, 2003.
DOI : 10.1016/S0960-9822(01)00098-7

A. K. Mongiu, E. L. Weitzke, O. Y. Chaga, and G. G. Borisy, Kinetic-structural analysis of neuronal growth cone veil motility, Journal of Cell Science, vol.120, issue.6, pp.1113-1125, 2007.
DOI : 10.1242/jcs.03384

B. Hinz, W. Alt, C. Johnen, V. Herzog, and H. W. Kaiser, Quantifying Lamella Dynamics of Cultured Cells by SACED, a New Computer-Assisted Motion Analysis, Experimental Cell Research, vol.251, issue.1, pp.234-243, 1999.
DOI : 10.1006/excr.1999.4541

V. Argiro, M. B. Bunge, and M. I. Johnson, A quantitative study of growth cone filopodial extension, Journal of Neuroscience Research, vol.49, issue.1-2, pp.149-162, 1985.
DOI : 10.1002/jnr.490130111

M. Steketee, K. Balazovich, and K. W. Tosney, Filopodial Initiation and a Novel Filament-organizing Center, the Focal Ring, Molecular Biology of the Cell, vol.12, issue.8, pp.2378-2395, 2001.
DOI : 10.1091/mbc.12.8.2378

R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. Wang et al., Engineering cell shape and function, Science, vol.264, issue.5159, pp.696-698, 1994.
DOI : 10.1126/science.8171320

C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, pp.1425-1428, 1997.
DOI : 10.1126/science.276.5317.1425

J. C. Geisse, G. M. Adams, D. E. Whitesides, and . Ingber, Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces, FASEB J, vol.16, pp.1195-1204, 2002.

M. Thery, V. Racine, A. Pepin, M. Piel, Y. Chen et al., The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.124, issue.10, pp.947-953, 2005.
DOI : 10.1007/s00249-003-0282-2

. Borisy, Molecular dynamics imaging in micropatterned living cells, Nat. Methods, vol.2, pp.739-741, 2005.

H. Sorribas, C. Padeste, and L. Tiefenauer, Photolithographic generation of protein micropatterns for neuron culture applications, Biomaterials, vol.23, issue.3, pp.893-900, 2002.
DOI : 10.1016/S0142-9612(01)00199-5

D. J. Leahy, I. Aukhil, and H. P. , 2.0 ?? Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region, Cell, vol.84, issue.1, pp.155-164, 1996.
DOI : 10.1016/S0092-8674(00)81002-8

L. Guemouri, J. Ogier, Z. Zekhini, and J. J. Ramsden, The architecture of fibronectin at surfaces, The Journal of Chemical Physics, vol.113, issue.18, pp.8183-8186, 2000.
DOI : 10.1063/1.1314861

H. Sorribas, C. Padeste, and L. Tiefenauer, Photolithographic generation of protein micropatterns for neuron culture applications, Biomaterials, vol.23, issue.3, pp.893-900, 2002.
DOI : 10.1016/S0142-9612(01)00199-5

V. A. Liu, W. E. Jastromb, and S. N. Bhatia, Engineering protein and cell adhesivity using PEO-terminated triblock polymers, Journal of Biomedical Materials Research, vol.404, issue.1, pp.126-134, 2002.
DOI : 10.1002/jbm.10005

B. J. Dubin-thaler, G. Giannone, H. G. Dobereiner, and M. P. Sheetz, Nanometer Analysis of Cell Spreading on Matrix-Coated Surfaces Reveals Two Distinct Cell States and STEPs, Biophysical Journal, vol.86, issue.3, pp.1794-1806, 2004.
DOI : 10.1016/S0006-3495(04)74246-0

M. R. Amieva and H. Furthmayr, Subcellular Localization of Moesin in Dynamic Filopodia, Retraction Fibers, and Other Structures Involved in Substrate Exploration, Attachment, and Cell-Cell Contacts, Experimental Cell Research, vol.219, issue.1, pp.180-196, 1995.
DOI : 10.1006/excr.1995.1218

L. S. Price, J. Leng, M. A. Schwartz, and G. M. Bokoch, Activation of Rac and Cdc42 by Integrins Mediates Cell Spreading, Molecular Biology of the Cell, vol.9, issue.7, pp.1863-1871, 1998.
DOI : 10.1091/mbc.9.7.1863

]. L. Haviv, Y. Brill-karniely, R. Mahaffy, F. Backouche, A. Ben-shaul et al., Reconstitution of the transition from lamellipodium to filopodium in a membrane-free system, Proceedings of the National Academy of Sciences, vol.103, issue.13, pp.4906-4911, 2006.
DOI : 10.1073/pnas.0508269103

]. A. Steffen, J. Faix, G. P. Resch, J. Linkner, J. Wehland et al., Filopodia Formation in the Absence of Functional WAVE- and Arp2/3-Complexes, Molecular Biology of the Cell, vol.17, issue.6, pp.2581-2591, 2006.
DOI : 10.1091/mbc.E05-11-1088

H. Tokuo, K. Mabuchi, and M. Ikebe, The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation, The Journal of Cell Biology, vol.113, issue.2, pp.229-238, 2007.
DOI : 10.1038/ncb1535

P. Hotulainen and P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells, The Journal of Cell Biology, vol.47, issue.3, pp.383-394, 2006.
DOI : 10.1002/cm.20005

P. A. Marignani and C. L. Carpenter, Vav2 is required for cell spreading, The Journal of Cell Biology, vol.1332, issue.1, pp.177-186, 2001.
DOI : 10.1038/374470a0

N. R. Filipenko, S. Attwell, C. Roskelley, and S. Dedhar, Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via ??-PIX, Oncogene, vol.277, issue.38, pp.5837-5849, 2005.
DOI : 10.1038/sj.onc.1208737

J. P. Ten-klooster, Z. M. Jaffer, J. Chernoff, and P. L. Hordijk, Targeting and activation of Rac1 are mediated by the exchange factor ??-Pix, The Journal of Cell Biology, vol.18, issue.5, pp.759-769, 2006.
DOI : 10.1128/MCB.20.17.6354-6363.2000

. Schwartz, Integrins regulate Rac targeting by internalization of membrane domains, Science, vol.303, pp.839-842, 2004.

M. A. Del-pozo, N. Balasubramanian, N. B. Alderson, W. B. Kiosses, A. Grande-garcia et al., Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization, Nature Cell Biology, vol.92, issue.9, pp.901-908, 2005.
DOI : 10.1083/jcb.148.1.17

H. Tokuo and M. Ikebe, Myosin X transports Mena/VASP to the tip of filopodia, Biochemical and Biophysical Research Communications, vol.319, issue.1, pp.214-220, 2004.
DOI : 10.1016/j.bbrc.2004.04.167

H. Zhang, J. S. Berg, Z. Li, Y. Wang, P. Lang et al., Myosin-X provides a motor-based link between integrins and the cytoskeleton, Nature Cell Biology, vol.16, issue.6, pp.523-531, 2004.
DOI : 10.1074/jbc.273.22.13878

A. B. Bohil, B. W. Robertson, and R. E. Cheney, Myosin-X is a molecular motor that functions in filopodia formation, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12411-12416, 2006.
DOI : 10.1073/pnas.0602443103