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Abstract

The paper formulates joint modeling of a counting process and a
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sequence of longitudinal measurements, governed by a common latent
stochastic process. The latent process is modeled as a function of ex-
planatory variables and a Brownian motion process. The conditional
likelihood given values of the latent process at the measurement times,
has been drawn using Brownian bridge properties; then integrating
over all possible values of the latent process at the measurement times
leads to the desired joint likelihood. An estimation procedure us-
ing joint likelihood and a numerical optimization is described. The
method is applied to the study of cognitive decline and Alzheimer’s

disease.

Key words: latent process, Brownian motion, joint model, dementia, Alzheimer’s

disease

The original publication is available at www.springerlink.com
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1 Introduction

A detailed description of the evolution of the health of subjects involves
considering both continuous processes and events. This is also true when
considering an industrial item for which a continuous degradation process
precedes the failure. One example in epidemiology is the evolution of the
number of CD4 lymphocytes and the onset of AIDS, or of death, in HIV in-
fected patients (see Wulfsohn and Tsiatis, 1997; Faucett and Thomas, 1996).
Another example, which will serve as an illustration of our model, is the evo-
lution of cognitive abilities and onset of dementia. The aims of joint models
are in particular a better description of the link of the two kinds of observa-
tions, the increase in power to detect factors influencing the evolution, the
prediction of the event using the observation of the marker.

An approach of joint modeling tries to directly relate the distribution of
the marker and of the time to event (Hogan and Laird, 1997; Faucett and
Thomas, 1996). It however seems more interesting to tackle the problem in a
stochastic processes framework in which a better description of the dynamic
of the phenomena is possible. Stochastic processes were introduced in the
modeling of quantitative longitudinal data by Diggle (1988). A joint model
based on latent stochastic processes was proposed by Henderson, Diggle and
Dobson (2000). In this model the latent process acts as a time dependent
variable in a proportional hazard model for the event. A different approach
defines the event as the crossing of a barrier by a latent process (Cox, 1999).
Aalen and Gjessing (2001) studied the shape of hazard functions for events
defined as the hitting time of a barrier by a Wiener process (equivalently
a Brownian motion), possibly with drift and random effects. Whitmore,
Crowder and Lawless (1998) proposed a joint model in which the event was

defined as the crossing of a barrier by a latent Wiener process; the model is
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quite flexible because the marker is determined by another process which may
be correlated to the first. Lee, DeGruttola and Schoenfeld (2000) extended
this model to take covariates into account. However only the case where one
observation of the marker, at the time of censoring, was available has been
dealt with.

The aim of this paper is to pursue the latter approach of modeling, for
mainly two reasons: defining an event in this way fits conceptually well to
the modeling of dementia (dementia can really be considered as defined as
having cognitive abilities below a certain level); mathematically the model
is nice because the hitting probabilities can be computed by relatively sim-
ple formulas for the Brownian motion. Nevertheless, considerable numerical
difficulties arise, but they can be dealt with. We shall present a joint model
for a marker and an event based on a latent process modeled linearly as a
function of explanatory variables having fixed or random effects and driven
by a Brownian motion. The event of interest occurs when the latent process
hits a barrier. We may have either exact or interval-censored observations of
the hitting time and the process is indirectly observed at discrete times by a
marker.

This model is described in section 2. In section 3 the likelihood for the
observations is given; the case where the observations are left-truncated is
treated. In section 4 an algorithm, based on a version of the Newton-Raphson
algorithm, is proposed. A simulation study is presented in section 5, which
in particular illustrates the gain in precision obtained by using the joint
information as compared to using only the marker information. In section
6 a joint model of the onset of dementia and observation of a psychometric

test is fitted on the data of the Paquid cohort study. Section 7 concludes.
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2 Model

2.1 Definition of the model

We consider that all observations of markers and events depend on latent
processes A;(t), i = 1,---,n. In our application we think of the latent pro-
cess as the cognitive ability of the subject; it is modeled as a function of
explanatory variables and a stochastic term, W;(t), which is taken to be a
standard Brownian motion (a variance parameter would not be identifiable).

The model is as follows:
A(t) = (Z} o+ Z2 ;) + (Z3 B+ Zi b))t + Wi(t) (1)

where o and 3 are vectors of unknown regression parameters associated with

explanatory variables Z! and Z3, a; and b; are vectors of random effects

7
associated with explanatory variables Z? and Z} respectively. The random
effects a; and b; are assumed to be independent of W;(t), i = 1,--- ,n, and

normally distributed with zero means and variance

The relation between the latent process and its indirect measurement at

time ¢,; is modeled as:
Xij=v+mAilty) +e; 57 =1-,r

where vy and 7, are parameters and ¢;; are measurement errors which are
assumed to be identically and independently normally distributed with zero

mean and variance o2. The process of observation times is independent of

Ai(t).
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A subject becomes ill when the latent process reaches the threshold 7
for the first time, and we denote this time 7};; more formally T} = inf{t >
0; A;(t) < n} is the first passage time to 1. The clinical state of the subjects
is described by D;(t) with D;(¢) = 0 if subject is healthy, D;(¢) = 1 if ill, so
D;(t) = Iiri<yy- D; may be observed either in continuous time or in discrete
time.

Consider first the often more realistic case of observation at discrete times

tii, 7 =1,---,r; already defined. In that case we do not observe exactly the

i
first passage time 7 but we observe whether T)) < t;,j = 1,--- ,r;. There
are two possible kinds of observations: subjects who are observed ill at #;,,
(thus tim, = min{t;; : D;(t;j) =1, j = 1,---7r;}), and subjects who remain
healthy until ¢;,,. It is easy to modify formulas, if there are non-informative
missing values, either in X;, or in D;. We will also have in the application
an artificial missing data mechanism by ignoring the observation of X; after
tim;. This will make the linear trend assumption more tenable.

In the case where D; is observed in continuous time, and the event has
occured before ¢, T}} is observed.

A particular feature of the model with random intercept is that there is
a non-null probability of being ill at time zero. However this fits with our
application on dementia because we take the origin of time at 58 years, an
age at which the probability of being demented is non-null.
We consider the case where the sample may be selected by a truncation

mechanism; subjects can be selected in the sample only if D;(¢;1) = 0, that

is, diseased subjects at t;; are excluded.
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2.2 Hazard rate

In our model marginally relative to the random effects, the hazard rate for
a subject with explanatory variables Z!,--- ,Z}, can be written as the ra-
tio of the marginal density over the marginal survival, conditional on these
quantities being different from zero:

ff t UZ '¢’Z(al) )dPai,bi
f[l - t :u’l )1 wi(ai)’ n)]dPai,bi ’

where f(.) is the density of hitting time of the Brownian motion with

hi(t) = t>0, (2)

drift p to threshold 7, (see, e.g. Karatzas and Shreve, 1991) also known as

the p.d.f. of the inverse-Gaussian distribution:

_ _ 2
[t pm,,m) = %XP[—W}; t>0n<¢,peR,  (3)
and,

Fltomiin) = 1= @ (uvis P20 ) o emiona (i - (4)

)

where @ is the cumulative standard normal distribution. F'(t, i, 1, n) is the
probability that a Brownian motion with drift u starting at @ > n reaches
the level n before ¢: if p < 0, F(oo, u, ¥, n) = 1; if p > 0 F(oo, u, v, m) =
e~ 2(¢=1) _ For subject i the starting point is 1;(a;) = Z} a+Z? a; and the drift
is pi(b;) = Z3 B+ Z# b;. Marginal density and survival for ¢ > 0 are obtained
by integration of their conditional counterparts given the random effects,
relatively to the distribution of the random effects conditional on ;(a;) > 7.
This integration can be done numerically, using for instance a mean of the
integrand term for values of a;, b; generated from their multivariate normal

distribution and rejecting the draws such that ¢;(a;) < .



1duosnuew Joyine vH

=
0
1]
=
2
(]
o
N
<]
N
o
a1
=
<
1]
=
@,
o
=
[EEY

3 Likelihood

3.1 Likelihood ignoring the selection of the sample

Consider first the case where D; is observed in discrete time. Using the fact
that )(Z = (X’ila s ,Xi”)T and DZ = (Dila s aDiri)T with D” = Dz(tu) are

independent conditional on A; we can write the likelihood for subject 7 as :

L;(0;X;,D;) = L;(0;X;) x L;(6; D;|X;)

where A; = (Air, -+, Airy)T, with A;; = A;(ti;), and where the set of pa-
rameters is denoted by 0 = (o, 8,70,71,7, [, 02). We first evaluate the term
Li(0;D;|A; = );), denoted more briefly Lp,|5, (here ); is a dummy inte-
gration variable belonging to R™). If D;,, = 1, the disease occured in
(tim;—1,tim;], that is, the latent process A;(t) never attained the value 7
in [0,%; m,—1], and attained it in (¢;m,—1, tim;]- If D;, = 0, the latent process
never reached 7 during the study, that is in [0, ¢;,].

Hence we have to compute the following probabilities:

Plmin A;(¢) >n, minA;(t) < n|A; = A if D;(t;,,) =1

tE[0,ts,m ;1] tE (i m; —15tim,;]
te[ovtiri]

It can be shown (see appendix) that this part of the conditional likelihood
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is as follows:

‘CDiI)\i:

_ Dir-
mi—1 —2(Aij—1=m)Aij=m) ~2im =171 g =) |+ i <) '
j=1

1—Dj,.
i —2(A; j—1=m) X —m) i
AT —e W s (6)

j=1

In formula (5), the expectation of Lp, s, with respect to the conditional
density function of the latent process vector, A;, given X, has to be taken.
From a result of Lindley (1971) the distribution of A;, given X; is a multi-

variate normal distribution of dimension r;, with expected value:
M; = V; % [Xi =701 =m(Z; o+ Z3 B t.)] + (Z; a + Z] B t;).
where V,; = (Z—z I+ G; 1)1 is the variance of this distribution, with

Fa Fab
Fba Fb

Ti ™

Gi=%+( 1,2 81,2 ) (@27 @.zhrs ),
where S; = Diag(ti1,- - - , tir;), where element jk of X; is equal to min(¢;;, ¢;z)-
For the second part of the likelihood function, £;(#;X;) denoted more
briefly L£x,, X; has a normal distribution with mean vector vy 1,, +71(Z} o+
Z3 B t;) and variance matrix v G; + 021,..
If D; is observed in continuous time the same approach can be taken for

the likelihood construction, but since observing D; (for uncensored subject
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i) is observing T, formula (6) must be replaced by:

Lo =

Djp.
m;i—1 =22 j—1-mM g5 —n) ) *
pypa i
| | 1—e bij =t =1 I{)\ij>n} X f(Tn, Hi, )"i,mifl, 77)

j=1
B 1—Dj,p.
T'i —2(Xg j—1=m5—m) *re

% H(l —e tij—ti i1 )I{)\ij>n} ,

j=1

with f(.) as in formula (3), and p; = Z3 8 + Z} b;.

3.2 Selection of the sample

The sample may be selected according to a condition C;, so we must use a
L£(6)
P’
experienced the failure before the first observation are excluded from the

conditional likelihood . It may often be the case that subjects having

sample; the condition is D;(t;1) = 0. So we have to compute the probability

that the minimum of the latent process A; in [0, ¢;;] be greater than 7

P(Dy = 0) = P(ds(a;) > ) — / / F(ta, pa(by), s(as), 1)d Py,

where F(.) is as formula (4) and dP,,p, represents as in formula (2) the

integration relatively to the distribution of the random effects conditionally

on ¥;(a;) > n.

4 Algorithm for maximising the likelihood

4.1 Pseudo-likelihood

The procedure of maximisation of the likelihood is relatively slow because of
the numerical integration. So to find the initial values, we construct a pseudo-

likelihood, for which we use the information of indirect measurements, that

9
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is, Lx, as in section (3.1), for the likelihood pretending we observe D;,, =1

with ¢;,, fixed and D; independent of X;. Thus the pseudo-likelihood is:
Lx, X P(Diy, = 1)P7 x P(Dyy, = 0)' P

Ignoring the expectation with respect to the density of the random effects,
P(D;r, = 1) can be approximated by F'(t., pui(5), ¥i(a),n), where 9;(a) =
Z; « and p;(B8) = Z3 38, with F(.) as in formula (4). This pseudo-likelihood

is easily maximised and provides good initial values.

4.2 Algorithm of maximisation

We maximise the likelihood using a modified version of the Newton-Raphson
algorithm, proposed by Marquardt (1963). The computation of the likelihood
involves a multiple numerical integration for each subject and we must also
compute the first and second derivatives, which we do by numerical differ-
entiation. Multiple integrations are usually done by Monte-Carlo algorithms
(see Evans and Swartz, 2000). The simplest one is to approximate Lp, x, by
% ZkN:1 Lp,a;(Ax), where ); is generated from the conditional distribution

of A; given X;.

5 Simulation study

In the simulation study we consider a model with one explanatory variable

and a random intercept and a random slope; so the model is as follows:
Ai(t) = Zia+ a; + (Bo + B1 Zi + bi) t + Wi(t)

and

Xij =70+ 71 Ailtij) + €5

10
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and D;(t) = Iizi<y. We have to estimate the set of parameters {a, o2, of,

Oab, 0-3; /BOa /Bla Yo, V1, 77}
Marginally, the model of X; is:

Xii=v+Ziayi+aiv+7 (Bo+ Z; b1+ b;) tij + 71 Wiltij) + €45

We may base inference on observations of the X;; only, using what would
be a marginal likelihood relative to the full model. It is interesting to com-
pare the precision obtained with this marginal inference based only on the
observation of X; (ignoring the information on D;) to that obtained using
the joint model. Moreover we apply in this simulation the same artificial
missing data mechanism as we apply in the example: observations of X;
after ¢;,,, (when dementia has been diagnosed) are ignored. This leads to
non-informative missing data in the joint model because the fact that data
are missing depends on what has been observed. The missing data mecha-
nism will be informative in the marginal model since D; is not modeled; this
happens because the distribution of (X;y,. .., X;m,) given m; = ¢ is not the
same as the distribution of (X1, ..., X;.) for fixed c.

In this study, 200 replications were done and in each of them we simulated
200 subjects. The explanatory variable Z; was simulated according to the
Bernoulli distribution with parameter 0.25. The first visit time of each sub-
ject was at the age 65 years plus a number which has been chosen randomly
from the set {1,2,---,8}; there were 5 years between all visits. As explained
above, observation were stopped at t;,,,, for subject with observed event. The
number of visits was less than or equal to 6, and distributed as in Table
1. Both models were simulated using the values for parameters in Table 2
called true parameters. For the computation of each integral, 2000 replica-
tions have been used. The algorithm generally converged well (convergence

being judged on difference in the loglikelihoods, distance in the parameter

11
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space and most importantly, norm of the gradient) in about 10 iterations
and took about 25 minutes, on a PC (pentium 3); in the simulation study it
failed to converge in about 5% of the cases, probably due to some extreme
realized values of the observed variables.

The results are summarized in Table 2. The estimated slope in the
marginal model (f) seems to have a bias which can be explained by the
informative censoring described above. The joint model yields smaller stan-
dard deviations for all the estimators; in addition it allows to estimate 1 and
to make inference on the failure. We may note in addition that the corre-
lation between the random effects seems difficult to estimate, at least with

this sample size.

6 Application

The proposed approach was applied to the joint modeling of dementia and
a psychometric test, the Mini Mental State (MMS) (Folstein et al. 1975),
using the data of the PAQUID cohort.

The PAQUID program on cerebral aging is based on a large cohort ran-
domly selected in a population of subjects aged 65 years or more, living
at home in two departments of southwest France (Gironde and Dordogne).
There were 3675 subjects non demented at entry in the cohort considered
and each subject has been visited six times or less, between 1988 and 2000;
428 cases of incident dementia were observed. At each visit the MMS was
measured and diagnosis of dementia was made by neurologists based on the
NINCDS-ADRDA criteria (for details see Letenneur et al., 1999). The infor-
mation given by the diagnosis of dementia on the latent process is considered

as independent from the MMS value.

12
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The risk of developing dementia was modeled as a function of age, so the
data were left-truncated and the truncation variable was the age at entry
in the cohort (for details see Commenges et al., 1998). There was also the
problem of determining the origin of time: it would not make sense to model
the decline of cognitive ability as having a linear trend from birth of the
subject. Rather we made the assumption of a linear trend from an age
located between 50 and 65. We used profile likelihood to determine this origin
of time, that is, for each given value of the starting age we ran the program
and computed the likelihood; then we chose the value which maximised the
likelihood. This starting age was determined as 58 years.

In principle an illness-death model would be appropriate (Joly et al., 2002)
if one did not want to jointly model dementia and cognitive performance;
however approximate inference for the transition towards dementia can be
made by considering death as censoring. It is likely that this produces a bias
but it is not possible to treat the joint model rigorously with existing models.

In this application of our model, the latent process represents cognitive
ability; if it goes under a threshold 7, dementia occurs; cognitive ability is
indirectly measured by a psychometric test, the MMS. Since the distribution
of the MMS is far from normal we use the transformation /30 — MMS, al-
ready used by Jacqmin-Gadda et al. (1997). When dementia was diagnosed,
further observations of the MMS were not taken into account, as already
explained in the simulation section. This was done because the behaviour of
the latent process may be different for non-demented and demented subjects.

We entered gender as an explanatory variable, which will be denoted by
SEX=1 if female and SEX=0 if male. A model with a random effect in slope

was tried, but the variance of the random effect was estimated to be zero.

13
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Thus the estimated model contains only a random intercept and is as follows:
Ai(t) = aSEX; + a; + (8o + 81 SEX;) t + W(t)
where a; ~ N(0,02%). The estimated threshold was 7 = —12.38, and
Xij =Y + 1 Ailtiy) + €5

The results are summarized in Table 3. With the estimated values of the
parameters 7, 71 and 7 the mean value of X at onset of dementia is 3.2 cor-
responding to a MMS value of 19.7. This is compatible with clinical practice:
although the diagnosis of dementia is not based directly on the MMS, most
diagnosed subjects have a MMS below 24, a threshold conventionally used
to define cognitive impairment; on the other hand not all subjects scoring
below 24 are diagnosed as demented.

The hazard function of the latent process model (formula 2), for men and
women, is shown in figure 1. As expected there is a negative slope for the
latent process (8o = —0.216). Women start higher than men (& = 0.712) but
have a steeper slope (Bl = —0.09); all these effects are significantly different
from zero. This is in accordance with previous findings (Commenges et al.,
1998; Joly et al., 2002) that women in the older age group have a higher risk

of dementia than men. There is also a random effect on the intercept with

variance significantly different from zero.

7 Conclusion

We have developed a joint modeling of a marker and an event which fits well
in situations where the event can be conceptualized as defined by the crossing
of a barrier by a given process; this is the case of dementia and this gives a

better interpretability of the parameters. Moreover our work shows that it

14
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is possible to maximize a likelihood using Newton-Raphson type algorithm
even when the likelihood involves many numerical integrals.

One limit of the model is the assumption of a linear trend in time of
the latent process which allows using relatively simple formulas available for
Brownian motion with (linear) drift. Removing this assumption would make
the computation much heavier. Thus it would be useful to develop diagnosis
tests for this model.

An interesting possibility would be to estimate the values of the random
effects and of the Brownian motion for a subject ¢ given the observations; also
prediction could directly be done by estimating the conditional probability
given the observations of being demented at a given time after the last visit.
This could in principle be done by an empirical Bayes approach, computing
conditional expectations given the observations. However, in view of the
complexity of the model this would have to be done by simulation.

Further extensions would involve both multiple markers and events. For
instance in the application to cognitive decline, several psychometric tests

may be performed and it would be useful to model death as well as dementia.

15
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Appendix: Calculation of the likelihood

To compute the first part of the likelihood function denoted by Lp, s, we

evaluate the following probabilities

teltioti,m;—1] LE[ts,m;—15tim;]
t€ftio,tir;]
Now we partition the interval [tio, tzmz] to [tiO: tﬂ], e, [ti,mi—la tzml]a and in
the same way the interval [tio, tm] to [tio, tﬂ], e, [ti,m—l: t“«l] where tiO: e, tiri

are fixed, we consider independent Brownian bridges obtained by condition-
ing A by its values at the bounds of these intervals. Thus minimum of the

process in [t; j_1,t;;] depends only on A; ;_1, Ajj, so Lp,ja, can be written as

m;—1

Loga, = { [T PLmin (Ai(s +ti5-1) = A1) > 1= Aijoa| AAi; = ANy]
j=1

SE[O,Atij]

% P[se[gnAi?' }(Ai(s + tivmifl) - )‘i,mifl) <n- Aiami*1|AAimi = A)‘ZTM]}DW%

where At;; = t;; — t;j—1 and AN = Ay — ANijo1. Ni(s 4+ tij-1) — Nijoa
conditioned on AA;; = A);; has same law as a Brownian motion conditioned
on B(At;;) = AM);; (this is a Brownian bridge starting at zero and ending
at A);;, in particular it is interesting to see that the law of this process
does not depend on the linear drift). Thus using standard results (Karatzas
and Shreve, 1991; Klebaner, 1998) on the distribution of the minimum of a

Brownian bridge we obtain formula (6).

16
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Table 1: Distribution of number of visits in the simulation study

=
n
)
=
2
©)
(@}
N
(o2}
N
o
a1
=
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@,
o
=
[ERN

Probability | 0.06 0.15 0.2 0.2 0.2 0.2

Num. of visits | 1 2 3 4 5 6
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Table 2: Results of the simulation study with 200 replications, of 200 sub-

jects. For each parameter: first row: linear model; second row: joint model

';Er Parameter  True value Average of empirical Average of
2 in LMM! R A —
3 (6) S.D.(A)  S.E.(9)
5 in JMLP?
QD
= 0.430 0.0432 0.0402
8 O 0.44
5 0.447 0.0138 0.0173
= 2.015 0.929 0.919
> Oq 2
3 2.053 0.709 0.724
(@]
S 0.264 0.141 0.129
8 Op 0.2
o 0.253 0.0804 0.0838
& 0.063 0.312 0.384
g. Oab 0.1
> 0.057 0.249 0.293
—2.178 1.009 0.987
« -2
—2.246 0.935 0.829
—0.238 0.0914 0.0823
Bo 0.4
—0.459 0.0737 0.0693
—0.178 0.106 0.102
B -0.2
—0.223 0.0856 0.0871
1.219 0.0625 0.0651
’)/0 ]_2
1.193 0.0618 0.0613
—0.199 0.0424 0.0382
1 -0.19
—0.178 0.0183 0.0224
n 11, - - -

—11.492 1.191 1.354

. Linear mixed model, 2: Joint model with latent process
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Table 3: Estimated parameters of the joint model for MMS and dementia

2- and their standard deviations (the PAQUID study N = 3675)

3

o

N

% ~

= Parameter Estimation S.D(6)

(e

s O 0.514 0.004

3,

S Oq 1.405 0.302

'_\
o 0.712 0.312
Bo -0.216 0.014
Joit -0.090 0.017
Yo 1.116 0.04
Y1 -0.169 0.004
n -12.38  0.328
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Figure 1: Estimated hazard function of dementia in the latent process model

by gender (PAQUID study)
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