D. Ingber, Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology, Circulation Research, vol.91, issue.10, pp.877-887, 2002.
DOI : 10.1161/01.RES.0000039537.73816.E5

A. Kodama, T. Lechler, and E. Fuchs, Coordinating cytoskeletal tracks to polarize cellular movements: Figure 1., The Journal of Cell Biology, vol.115, issue.2, pp.203-207, 2004.
DOI : 10.1016/S0092-8674(00)81017-X

S. Li, N. Huang, and S. Hsu, Mechanotransduction in endothelial cell migration, Journal of Cellular Biochemistry, vol.6, issue.6, pp.1110-1126, 2005.
DOI : 10.1002/jcb.20614

I. Hutcheson and T. Griffith, Mechanotransduction through the endothelial cytoskeleton: mediation of flow- but not agonist-induced EDRF release, British Journal of Pharmacology, vol.258, issue.Suppl. 52, pp.720-726, 1996.
DOI : 10.1111/j.1476-5381.1996.tb15459.x

D. Henrion, F. Terzi, K. Matrougui, M. Duriez, C. Boulanger et al., Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin., Journal of Clinical Investigation, vol.100, issue.11, pp.2909-2914, 1997.
DOI : 10.1172/JCI119840

L. Loufrani, K. Matrougui, D. Gorny, M. Duriez, I. Blanc et al., Flow (Shear Stress)-Induced Endothelium-Dependent Dilation Is Altered in Mice Lacking the Gene Encoding for Dystrophin, Circulation, vol.103, issue.6, pp.864-870, 2001.
DOI : 10.1161/01.CIR.103.6.864

URL : https://hal.archives-ouvertes.fr/inserm-00135482

P. Schiffers, D. Henrion, C. Boulanger, E. Colucci-guyon, F. Langa-vuves et al., Altered Flow-Induced Arterial Remodeling in Vimentin-Deficient Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.3, pp.611-616, 2000.
DOI : 10.1161/01.ATV.20.3.611

L. Loufrani, Z. Li, B. Levy, D. Paulin, and D. Henrion, Excessive Microvascular Adaptation to Changes in Blood Flow in Mice Lacking Gene Encoding for Desmin, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.10, pp.1579-1584, 2002.
DOI : 10.1161/01.ATV.0000032652.24932.1A

L. Loufrani, B. Levy, and D. Henrion, Defect in Microvascular Adaptation to Chronic Changes in Blood Flow in Mice Lacking the Gene Encoding for Dystrophin, Circulation Research, vol.91, issue.12, pp.1183-1189, 2002.
DOI : 10.1161/01.RES.0000047505.11002.81

J. Bevan and I. Laher, Pressure and flow-dependent vascular tone, Faseb J. Jun, vol.5, issue.9, pp.2267-2273, 1991.
DOI : 10.1007/978-1-4612-0403-9_11

J. Bevan and D. Henrion, Pharmacological Implications of the Flow-Dependence of Vascular Smooth Muscle Tone, Annual Review of Pharmacology and Toxicology, vol.34, issue.1, pp.173-190, 1994.
DOI : 10.1146/annurev.pa.34.040194.001133

D. Henrion, Pressure and flow-dependent tone in resistance arteries Role of myogenic tone. Arch Mal Coeur Vaiss, Sep, vol.98, issue.9, pp.913-921, 2005.

D. Henrion, I. Laher, R. Laporte, and J. Bevan, Angiotensin II amplifies arterial contractile response to norepinephrine without increasing Ca++ influx: role of protein kinase C, J Pharmacol Exp Ther, vol.261, issue.3, pp.835-840, 1992.

D. Henrion, J. Benessiano, and B. Levy, In Vitro Modulation of a Resistance Artery Diameter by the Tissue Renin-Angiotensin System of a Large Donor Artery, Circulation Research, vol.80, issue.2, pp.189-195, 1997.
DOI : 10.1161/01.RES.80.2.189

M. Iglarz, B. Levy, and D. Henrion, Chronic endothelin-1-induced changes in vascular reactivity in rat resistance arteries and aorta, European Journal of Pharmacology, vol.359, issue.1, pp.69-75, 1998.
DOI : 10.1016/S0014-2999(98)00616-5

D. Yeon, J. Kim, D. Ahn, S. Kwon, B. Kang et al., Role of protein kinase C-or RhoA-induced Ca(2+) sensitization in stretch-induced myogenic tone, Cardiovasc Res. Feb, vol.153, issue.2, pp.431-438, 2002.

R. Furchgott and J. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, vol.265, issue.5789, pp.373-376, 1980.
DOI : 10.1038/288373a0

R. Palmer, A. Ferrige, and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, vol.327, issue.6122, pp.524-526, 1987.
DOI : 10.1038/327524a0

M. Feletou and P. Vanhoutte, Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.985-1002, 2006.
DOI : 10.1152/ajpheart.00292.2006

W. Aird, Phenotypic Heterogeneity of the Endothelium: II. Representative Vascular Beds, Circulation Research, vol.100, issue.2, pp.174-190, 2007.
DOI : 10.1161/01.RES.0000255690.03436.ae

W. Aird, Phenotypic Heterogeneity of the Endothelium: I. Structure, Function, and Mechanisms, Circulation Research, vol.100, issue.2, pp.158-173, 2007.
DOI : 10.1161/01.RES.0000255691.76142.4a

P. Davies, J. Spaan, and R. Krams, Shear Stress Biology of the Endothelium, Annals of Biomedical Engineering, vol.53, issue.12, pp.1714-1718, 2005.
DOI : 10.1007/s10439-005-8774-0

J. Bevan and G. Siegel, Blood vessel wall matrix flow sensor: evidence and speculation, Blood Vessels, vol.28, issue.6, pp.552-556, 1991.

G. Siegel, A. Walter, A. Kauschmann, M. Malmsten, and E. Buddecke, Anionic biopolymers as blood flow sensors, Biosensors and Bioelectronics, vol.11, issue.3, pp.281-294, 1996.
DOI : 10.1016/0956-5663(96)88415-6

D. Henrion and J. Bevan, Magnitude of Flow-Induced Contraction and Associated Calcium Influx in the Rabbit Facial Vein Is Dependent upon the Level of Extracellular Sodium, Journal of Vascular Research, vol.32, issue.1, pp.41-48, 1995.
DOI : 10.1159/000159076

U. Pohl, K. Herlan, A. Huang, and E. Bassenge, EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries, Am J Physiol. Dec, vol.261, issue.6 2, pp.2016-2023, 1991.

J. Florian, J. Kosky, A. K. Pang, Z. Dull, R. Tarbell et al., Heparan Sulfate Proteoglycan Is a Mechanosensor on Endothelial Cells, Circulation Research, vol.93, issue.10, pp.136-142, 2003.
DOI : 10.1161/01.RES.0000101744.47866.D5

M. Nieuwdorp, M. Meuwese, H. Vink, J. Hoekstra, J. Kastelein et al., The endothelial glycocalyx: a potential barrier between health and vascular disease, Current Opinion in Lipidology, vol.16, issue.5, pp.507-511, 2005.
DOI : 10.1097/01.mol.0000181325.08926.9c

J. Vanteeffelen, J. Brands, C. Jansen, J. Spaan, and H. Vink, Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension, pp.261-267, 2007.

S. Weinbaum, X. Zhang, Y. Han, H. Vink, and S. Cowin, Mechanotransduction and flow across the endothelial glycocalyx, Proceedings of the National Academy of Sciences, vol.100, issue.13, pp.7988-7995, 2003.
DOI : 10.1073/pnas.1332808100

T. Morita, H. Kurihara, K. Maemura, M. Yoshizumi, R. Nagai et al., Role of Ca2+ and protein kinase C in shear stress-induced actin depolymerization and endothelin 1 gene expression, Circulation Research, vol.75, issue.4, pp.630-636, 1994.
DOI : 10.1161/01.RES.75.4.630

M. Cipolla, N. Gokina, and G. Osol, Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior, The FASEB Journal, vol.16, issue.1, pp.72-76, 2002.
DOI : 10.1096/cj.01-0104hyp

D. Sun, A. Huang, S. Sharma, A. Koller, and G. Kaley, Endothelial microtubule disruption blocks flow-dependent dilation of arterioles, Am J Physiol Heart Circ Physiol. M a y, vol.280, issue.5, pp.2087-2093, 2001.

J. Yu, S. Bergaya, T. Murata, I. Alp, M. Bauer et al., Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels, Journal of Clinical Investigation, vol.116, issue.5, pp.1284-1291, 2006.
DOI : 10.1172/JCI27100

P. Davies, Flow-mediated endothelial mechanotransduction, Physiol Rev. Jul, vol.75, issue.3, pp.519-560, 1995.

S. Lehoux, Y. Castier, and A. Tedgui, Molecular mechanisms of the vascular responses to haemodynamic forces, Journal of Internal Medicine, vol.21, issue.1, pp.381-392, 2006.
DOI : 10.1016/S0003-4975(02)03921-8

S. Chien, Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell, AJP: Heart and Circulatory Physiology, vol.292, issue.3, pp.1209-1224, 2007.
DOI : 10.1152/ajpheart.01047.2006

S. Lehoux and A. Tedgui, Making Up and Breaking Up: The Tortuous Ways of the Vascular Wall, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.5, pp.892-894, 2005.
DOI : 10.1161/01.ATV.0000164622.81752.9a

J. Muller, W. Chilian, and M. Davis, Integrin Signaling Transduces Shear Stress??Dependent Vasodilation of Coronary Arterioles, Circulation Research, vol.80, issue.3, pp.320-326, 1997.
DOI : 10.1161/01.RES.80.3.320

R. Koshida, P. Rocic, S. Saito, T. Kiyooka, C. Zhang et al., Role of Focal Adhesion Kinase in Flow-Induced Dilation of Coronary Arterioles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.12, pp.2548-2553, 2005.
DOI : 10.1161/01.ATV.0000188511.84138.9b

S. Brown and J. Lucy, Problems and paradigms: Dystrophin as a mechanochemical transducer in skeletal muscle, BioEssays, vol.265, issue.6, pp.413-419, 1993.
DOI : 10.1002/bies.950150608

K. Lapidos, R. Kakkar, and E. Mcnally, The Dystrophin Glycoprotein Complex: Signaling Strength and Integrity for the Sarcolemma, Circulation Research, vol.94, issue.8, pp.1023-1031, 2004.
DOI : 10.1161/01.RES.0000126574.61061.25

L. Loufrani, C. Dubroca, D. You, Z. Li, B. Levy et al., Absence of Dystrophin in Mice Reduces NO-Dependent Vascular Function and Vascular Density: Total Recovery After a Treatment with the Aminoglycoside Gentamicin, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.4, pp.671-676, 2004.
DOI : 10.1161/01.ATV.0000118683.99628.42

URL : https://hal.archives-ouvertes.fr/inserm-00137218

S. Aurino and V. Nigro, Readthrough strategies for stop codons in Duchenne muscular dystrophy, Acta Myol. Jun, vol.25, issue.1, pp.5-12, 2006.

I. Ramirez-sanchez, G. Ceballos-reyes, H. Rosas-vargas, D. Cerecedo-mercado, A. Zentella-dehesa et al., Expression and function of utrophin associated protein complex in stretched endothelial cells: dissociation and activation of eNOS, Frontiers in Bioscience, vol.12, issue.1, pp.1956-1962, 2007.
DOI : 10.2741/2201

I. Fleming and R. Busse, Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase: Fig. 1., American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol.284, issue.1, pp.1-12, 2003.
DOI : 10.1152/ajpregu.00323.2002

N. Deconinck, M. Scaillon, V. Segers, J. Groswasser, and D. B. , Opsoclonus-Myoclonus Associated With Celiac Disease, Pediatric Neurology, vol.34, issue.4, pp.312-314, 2006.
DOI : 10.1016/j.pediatrneurol.2005.08.034

V. Rizzo, C. Morton, N. Depaola, J. Schnitzer, and P. Davies, Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.4, pp.1720-1729, 2003.
DOI : 10.1152/ajpheart.00344.2002

Z. Bagi, J. Frangos, J. Yeh, C. White, G. Kaley et al., PECAM-1 Mediates NO-Dependent Dilation of Arterioles to High Temporal Gradients of Shear Stress, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.8, pp.1590-1595, 2005.
DOI : 10.1161/01.ATV.0000170136.71970.5f

N. Dusserre, L. Heureux, N. Bell, K. Stevens, H. Yeh et al., PECAM-1 Interacts With Nitric Oxide Synthase in Human Endothelial Cells: Implication for Flow-Induced Nitric Oxide Synthase Activation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.10, pp.1796-1802, 2004.
DOI : 10.1161/01.ATV.0000141133.32496.41

S. Liu, Y. M. Fung, and Y. , On measuring the third dimension of cultured endothelial cells in shear flow., Proceedings of the National Academy of Sciences, vol.91, issue.19, pp.8782-8786, 1994.
DOI : 10.1073/pnas.91.19.8782

J. Seebach, P. Dieterich, F. Luo, H. Schillers, D. Vestweber et al., Endothelial Barrier Function under Laminar Fluid Shear Stress, Laboratory Investigation, vol.263, issue.12, pp.1819-1831, 2000.
DOI : 10.1146/ANNUREV.CELLBIO.13.1.119

O. Thoumine, T. Ziegler, P. Girard, and R. Nerem, Elongation of Confluent Endothelial Cells in Culture: The Importance of Fields of Force in the Associated Alterations of Their Cytoskeletal Structure, Experimental Cell Research, vol.219, issue.2, pp.427-441, 1995.
DOI : 10.1006/excr.1995.1249

A. Cucina, A. Sterpetti, G. Pupelis, A. Fragale, S. Lepidi et al., Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells, European Journal of Vascular and Endovascular Surgery, vol.9, issue.1, pp.86-92, 1995.
DOI : 10.1016/S1078-5884(05)80230-8

E. Colucci-guyon, M. Portier, I. Dunia, D. Paulin, S. Pournin et al., Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell, pp.679-694, 1994.

F. Terzi, D. Henrion, E. Colucci-guyon, P. Federici, C. Babinet et al., Reduction of renal mass is lethal in mice lacking vimentin. Role of endothelin-nitric oxide imbalance., Journal of Clinical Investigation, vol.100, issue.6, pp.1520-1528, 1997.
DOI : 10.1172/JCI119675

B. Eckes, D. Dogic, E. Colucci-guyon, N. Wang, A. Maniotis et al., Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts, J Cell Sci, vol.111, pp.1897-1907, 1998.

B. Helmke, R. Goldman, and P. Davies, Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow, Circulation Research, vol.86, issue.7, pp.745-752, 2000.
DOI : 10.1161/01.RES.86.7.745

D. Tsuruta and J. Jones, The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress, Journal of Cell Science, vol.116, issue.24, pp.4977-4984, 2003.
DOI : 10.1242/jcs.00823

S. Kim and P. Coulombe, Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm, Genes & Development, vol.21, issue.13, pp.1581-1597, 2007.
DOI : 10.1101/gad.1552107

M. Mulvany, Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res, pp.9-13, 1999.

R. Prewitt, D. Rice, and A. Dobrian, Adaptation of Resistance Arteries to Increases in Pressure, Microcirculation, vol.9, issue.4, pp.295-304, 2002.
DOI : 10.1038/sj.mn.7800143

M. Mulvany, Small artery remodeling and significance in the development of hypertension, News Physiol Sci, vol.17, pp.105-109, 2002.

B. Langille, Arterial remodeling: relation to hemodynamics, Canadian Journal of Physiology and Pharmacology, vol.74, issue.7, pp.834-841, 1996.
DOI : 10.1139/y96-082

A. Koller, A. Huang, D. Sun, and G. Kaley, Exercise Training Augments Flow-Dependent Dilation in Rat Skeletal Muscle Arterioles : Role of Endothelial Nitric Oxide and Prostaglandins, Circulation Research, vol.76, issue.4, pp.544-550, 1995.
DOI : 10.1161/01.RES.76.4.544

D. Gorny, L. Loufrani, N. Kubis, B. Levy, and D. Henrion, Chronic Hydralazine Improves Flow (Shear Stress)-Induced Endothelium-Dependent Dilation in Mouse Mesenteric Resistance Arteries in Vitro, Microvascular Research, vol.64, issue.1, pp.127-134, 2002.
DOI : 10.1006/mvre.2002.2417

J. Unthank, S. Fath, H. Burkhart, S. Miller, and M. Dalsing, Wall Remodeling During Luminal Expansion of Mesenteric Arterial Collaterals in the Rat, Circulation Research, vol.79, issue.5, pp.1015-1023, 1996.
DOI : 10.1161/01.RES.79.5.1015

F. Pourageaud, D. Mey, and J. , Structural properties of rat mesenteric small arteries after 4-wk exposure to elevated or reduced blood flow, Am J Physiol. Oct, vol.273, pp.1699-1706, 1997.

C. Buus, F. Pourageaud, G. Fazzi, G. Janssen, M. Mulvany et al., Smooth Muscle Cell Changes During Flow-Related Remodeling of Rat Mesenteric Resistance Arteries, Circulation Research, vol.89, issue.2, pp.180-186, 2001.
DOI : 10.1161/hh1401.093575

F. Pourageaud, D. Mey, and J. , Vasomotor responses in chronically hyperperfused and hypoperfused rat mesenteric arteries, Am J Physiol, vol.274, issue.4 2, pp.1301-1307, 1998.

C. Bouvet, E. De-chantemele, A. Guihot, E. Vessieres, A. Bocquet et al., Flow-induced remodeling in resistance arteries from obese Zucker rats is associated with endothelial dysfunction. Hypertension, pp.248-254, 2007.

O. Dumont, L. Loufrani, and D. Henrion, Key Role of the NO-Pathway and Matrix Metalloprotease-9 in High Blood Flow-Induced Remodeling of Rat Resistance Arteries, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.317-324, 2007.
DOI : 10.1161/01.ATV.0000254684.80662.44

URL : https://hal.archives-ouvertes.fr/inserm-00136211

D. Tulis, J. Unthank, and R. Prewitt, Flow-induced arterial remodeling in rat mesenteric vasculature, Am J Physiol. Mar, vol.274, issue.3 2, pp.874-882, 1998.

Y. Castier, R. Brandes, G. Leseche, A. Tedgui, and S. Lehoux, p47phox-Dependent NADPH Oxidase Regulates Flow-Induced Vascular Remodeling, Circulation Research, vol.97, issue.6, pp.533-540, 2005.
DOI : 10.1161/01.RES.0000181759.63239.21

K. Matrougui, L. Loufrani, C. Heymes, B. Levy, and D. Henrion, Activation of AT2 Receptors by Endogenous Angiotensin II Is Involved in Flow-Induced Dilation in Rat Resistance Arteries, Hypertension, vol.34, issue.4, pp.659-665, 1999.
DOI : 10.1161/01.HYP.34.4.659

K. Matrougui, B. Levy, and D. Henrion, Tissue angiotensin II and endothelin-1 modulate differently the response to flow in mesenteric resistance arteries of normotensive and spontaneously hypertensive rats, British Journal of Pharmacology, vol.161, issue.3, pp.521-526, 2000.
DOI : 10.1038/sj.bjp.0703371

S. Etienne-manneville, Actin and microtubules in cell motility: which one is in control? Traffic, pp.470-477, 2004.

H. Schnittler, T. Schmandra, and D. Drenckhahn, Correlation of endothelial vimentin content with hemodynamic parameters, Histochemistry and Cell Biology, vol.110, issue.2, pp.161-167, 1998.
DOI : 10.1007/s004180050277

J. Tuttle, T. Hahn, B. Sanders, F. Witzmann, S. Miller et al., Impaired collateral development in mature rats, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.146-155, 2002.
DOI : 10.1152/ajpheart.00766.2001

S. Li, R. Piotrowicz, E. Levin, Y. Shyy, and S. Chien, Fluid shear stress induces the phosphorylation of small heat shock proteins in vascular endothelial cells, Am J Physiol. Sep, vol.271, issue.3, pp.994-1000, 1996.

E. De-chantemele, E. Vessieres, A. Guihot, O. Dumont, L. Loufrani et al., Reactive oxygen species have a central role in flow (shear stress)-induced remodeling in rat mesenteric resistance arteries, Hypertension, 2007.

F. Laurindo, P. Mde, A. Barbeiro, H. Pileggi, F. Carvalho et al., Vascular free radical release. Ex vivo and in vivo evidence for a flow- dependent endothelial mechanism, Circulation Research, vol.74, issue.4, pp.700-709, 1994.
DOI : 10.1161/01.RES.74.4.700

L. Tai, M. Okuda, J. Abe, C. Yan, and B. Berk, Fluid Shear Stress Activates Proline-Rich Tyrosine Kinase via Reactive Oxygen Species-Dependent Pathway, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.11, pp.1790-1796, 2002.
DOI : 10.1161/01.ATV.0000034475.40227.40

P. Silacci, A. Desgeorges, L. Mazzolai, C. Chambaz, and D. Hayoz, Flow Pulsatility Is a Critical Determinant of Oxidative Stress in Endothelial Cells, Hypertension, vol.38, issue.5, pp.1162-1166, 2001.
DOI : 10.1161/hy1101.095993

Q. Xu, Y. Hu, R. Kleindienst, and G. Wick, Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1., Journal of Clinical Investigation, vol.100, issue.5, pp.1089-1097, 1997.
DOI : 10.1172/JCI119619

S. Miller, L. Norton, M. Murphy, M. Dalsing, and J. Unthank, The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment, American Journal of Physiology - Heart and Circulatory Physiology, vol.292, issue.5, pp.2523-2531, 2007.
DOI : 10.1152/ajpheart.01296.2006

E. Mcnally, New Approaches in the Therapy of Cardiomyopathy in Muscular Dystrophy, Annual Review of Medicine, vol.58, issue.1, pp.75-88, 2007.
DOI : 10.1146/annurev.med.58.011706.144703

M. Thi, J. Tarbell, S. Weinbaum, and D. Spray, The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A "bumper-car" model, Proceedings of the National Academy of Sciences, vol.101, issue.47, pp.16483-16488, 2004.
DOI : 10.1073/pnas.0407474101

J. Wesselman, R. Kuijs, J. Hermans, G. Janssen, G. Fazzi et al., Role of the Rhoa/Rho Kinase System in Flow-Related Remodeling of Rat Mesenteric Small Arteries in Vivo, Journal of Vascular Research, vol.41, issue.3, pp.277-290, 2004.
DOI : 10.1159/000078826

E. Tzima, Role of Small GTPases in Endothelial Cytoskeletal Dynamics and the Shear Stress Response, Circulation Research, vol.98, issue.2, pp.176-185, 2006.
DOI : 10.1161/01.RES.0000200162.94463.d7

F. Li, W. Xia, A. Li, C. Zhao, and R. Sun, Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats, Pharmacological Research, vol.55, issue.1, pp.64-71, 2007.
DOI : 10.1016/j.phrs.2006.10.009

G. Loirand, P. Guerin, and P. Pacaud, Rho Kinases in Cardiovascular Physiology and Pathophysiology, Circulation Research, vol.98, issue.3, pp.322-334, 2006.
DOI : 10.1161/01.RES.0000201960.04223.3c