P. Matzinger, Friendly and dangerous signals: is the tissue in control?, Nature Immunology, vol.6, issue.1, pp.11-13, 2007.
DOI : 10.1038/ni0107-11

E. Raz, Organ-specific regulation of innate immunity, Nature Immunology, vol.6, issue.1, pp.3-4, 2007.
DOI : 10.1038/ni0107-3

J. Tschopp, F. Martinon, and K. Burns, NALPs: a novel protein family involved in inflammation, Nature Reviews Molecular Cell Biology, vol.95, issue.2, pp.95-104, 2003.
DOI : 10.1038/nrm1019

J. Ting and B. Davis, CATERPILLER: A Novel Gene Family Important in Immunity, Cell Death, and Diseases, Annual Review of Immunology, vol.23, issue.1, pp.387-414, 2005.
DOI : 10.1146/annurev.immunol.23.021704.115616

N. Inohara, M. Chamaillard, C. Mcdonald, and G. Nunez, NOD-LRR PROTEINS: Role in Host-Microbial Interactions and Inflammatory Disease, Annual Review of Biochemistry, vol.74, issue.1, pp.355-383, 2005.
DOI : 10.1146/annurev.biochem.74.082803.133347

J. Fritz, R. Ferrero, D. Philpott, and S. Girardin, Nod-like proteins in immunity, inflammation and disease, Nature Immunology, vol.176, issue.12, pp.1250-1257, 2006.
DOI : 10.1016/j.cub.2004.10.027

G. Barton and R. Medzhitov, Toll-Like Receptor Signaling Pathways, Science, vol.300, issue.5625, pp.1524-1525, 2003.
DOI : 10.1126/science.1085536

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen Recognition and Innate Immunity, Cell, vol.124, issue.4, pp.783-801, 2006.
DOI : 10.1016/j.cell.2006.02.015

J. Jones and J. Dangl, The plant immune system, Nature, vol.308, issue.7117, pp.323-329, 2006.
DOI : 10.1038/nature05286

S. Girardin, I. Boneca, J. Viala, M. Chamaillard, and A. Labigne, Nod2 Is a General Sensor of Peptidoglycan through Muramyl Dipeptide (MDP) Detection, Journal of Biological Chemistry, vol.278, issue.11, pp.8869-8872, 2003.
DOI : 10.1074/jbc.C200651200

N. Inohara, Y. Ogura, A. Fontalba, O. Gutierrez, and F. Pons, Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2: IMPLICATIONS FOR CROHN'S DISEASE, Journal of Biological Chemistry, vol.278, issue.8, pp.5509-5512, 2003.
DOI : 10.1074/jbc.C200673200

K. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, and N. Inohara, Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract, Science, vol.307, issue.5710, pp.731-734, 2005.
DOI : 10.1126/science.1104911

M. Chamaillard, M. Hashimoto, Y. Horie, J. Masumoto, and S. Qiu, An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid, Nature Immunology, vol.4, issue.7, pp.702-707, 2003.
DOI : 10.1038/ni945

S. Girardin, I. Boneca, L. Carneiro, A. Antignac, and M. Jehanno, Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan, Science, vol.300, issue.5625, pp.1584-1587, 2003.
DOI : 10.1126/science.1084677

J. Park, Y. Kim, C. Mcdonald, T. Kanneganti, and M. Hasegawa, RICK/RIP2 Mediates Innate Immune Responses Induced through Nod1 and Nod2 but Not TLRs, The Journal of Immunology, vol.178, issue.4, pp.2380-2386, 2007.
DOI : 10.4049/jimmunol.178.4.2380

K. Kobayashi, N. Inohara, L. Hernandez, J. Galan, and G. Nunez, RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems, Nature, vol.96, issue.6877, pp.194-199, 2002.
DOI : 10.1038/416194a

A. Chin, P. Dempsey, K. Bruhn, J. Miller, and Y. Xu, Involvement of receptor-interacting protein 2 in innate and adaptive immune responses, Nature, vol.90, issue.6877, pp.190-194, 2002.
DOI : 10.1038/416190a

O. 'riordan, M. Yi, C. Gonzales, R. Lee, K. Portnoy et al., Innate recognition of bacteria by a macrophage cytosolic surveillance pathway, Proceedings of the National Academy of Sciences, vol.99, issue.21, pp.13861-13866, 2002.
DOI : 10.1073/pnas.202476699

J. Viala, C. Chaput, I. Boneca, A. Cardona, and S. Girardin, Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nature Immunology, vol.92, issue.11, pp.1166-1174, 2004.
DOI : 10.1073/pnas.97.26.14668

P. Boughan, R. Argent, M. Body-malapel, J. Park, and K. Ewings, Nucleotide-binding Oligomerization Domain-1 and Epidermal Growth Factor Receptor: CRITICAL REGULATORS OF beta-DEFENSINS DURING HELICOBACTER PYLORI INFECTION, Journal of Biological Chemistry, vol.281, issue.17, pp.11637-11648, 2006.
DOI : 10.1074/jbc.M510275200

Y. Hsu, Y. Zhang, Y. You, D. Wang, and H. Li, The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens, Nature Immunology, vol.169, issue.2, pp.198-205, 2007.
DOI : 10.1182/blood-2003-07-2465

S. Leibundgut-landmann, O. Gross, M. Robinson, F. Osorio, and E. Slack, Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17, Nature Immunology, vol.14, issue.6, pp.630-638, 2007.
DOI : 10.1038/ni1460

O. Gross, A. Gewies, K. Finger, M. Schafer, and T. Sparwasser, Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity, Nature, vol.281, issue.7103, pp.651-656, 2006.
DOI : 10.1002/(SICI)1521-4141(199806)28:06<2045::AID-IMMU2045>3.3.CO;2-#

F. Martinon, K. Burns, and J. Tschopp, The Inflammasome, Molecular Cell, vol.10, issue.2, pp.417-426, 2002.
DOI : 10.1016/S1097-2765(02)00599-3

L. Agostini, F. Martinon, K. Burns, M. Mcdermott, and P. Hawkins, NALP3 Forms an IL-1??-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder, Immunity, vol.20, issue.3, pp.319-325, 2004.
DOI : 10.1016/S1074-7613(04)00046-9

F. Martinon and J. Tschopp, Inflammatory Caspases, Cell, vol.117, issue.5, pp.561-574, 2004.
DOI : 10.1016/j.cell.2004.05.004

C. Dinarello, The IL-1 family and inflammatory diseases, Clin Exp Rheumatol, vol.20, pp.1-13, 2002.

S. Miggin, E. Palsson-mcdermott, A. Dunne, C. Jefferies, and E. Pinteaux, NF-??B activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1, Proceedings of the National Academy of Sciences, vol.104, issue.9, pp.3372-3377, 2007.
DOI : 10.1073/pnas.0608100104

L. Gurcel, L. Abrami, S. Girardin, J. Tschopp, and F. Van-der-goot, Caspase-1 Activation of Lipid Metabolic Pathways in Response to Bacterial Pore-Forming Toxins Promotes Cell Survival, Cell, vol.126, issue.6, pp.1135-1145, 2006.
DOI : 10.1016/j.cell.2006.07.033

P. Sansonetti, A. Phalipon, J. Arondel, K. Thirumalai, and S. Banerjee, Caspase-1 Activation of IL-1?? and IL-18 Are Essential for Shigella flexneri???Induced Inflammation, Immunity, vol.12, issue.5, pp.581-590, 2000.
DOI : 10.1016/S1074-7613(00)80209-5

S. Mariathasan and D. Monack, Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation, Nature Reviews Immunology, vol.96, issue.1, pp.31-40, 2007.
DOI : 10.1038/nri1997

E. Boyden and W. Dietrich, Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin, Nature Genetics, vol.7, issue.2, pp.240-244, 2006.
DOI : 10.1038/ng1724

J. Bruey, N. Bruey-sedano, F. Luciano, D. Zhai, and R. Balpai, Bcl-2 and Bcl-XL Regulate Proinflammatory Caspase-1 Activation by??Interaction with NALP1, Cell, vol.129, issue.1, pp.45-56, 2007.
DOI : 10.1016/j.cell.2007.01.045

F. Martinon, L. Agostini, E. Meylan, and J. Tschopp, Identification of Bacterial Muramyl Dipeptide as Activator of the NALP3/Cryopyrin Inflammasome, Current Biology, vol.14, issue.21, pp.1929-1934, 2004.
DOI : 10.1016/j.cub.2004.10.027

T. Kanneganti, N. Ozoren, M. Body-malapel, A. Amer, and J. Park, Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3, Nature, vol.430, issue.7081, pp.233-236, 2006.
DOI : 10.1038/nature04517

T. Kanneganti, M. Body-malapel, A. Amer, J. Park, and J. Whitfield, Critical Role for Cryopyrin/Nalp3 in Activation of Caspase-1 in Response to Viral Infection and Double-stranded RNA, Journal of Biological Chemistry, vol.281, issue.48, pp.36560-36568, 2006.
DOI : 10.1074/jbc.M607594200

S. Mariathasan, D. Weiss, K. Newton, J. Mcbride, O. Rourke et al., Cryopyrin activates the inflammasome in response to toxins and ATP, Nature, vol.46, issue.7081, pp.228-260, 2006.
DOI : 10.1038/nature04515

F. Martinon, V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp, Goutassociated uric acid crystals activate the NALP3 inflammasome, Nature, vol.440, pp.228-232, 2006.

M. Lara-tejero, F. Sutterwala, Y. Ogura, E. Grant, and J. Bertin, pathogenesis, The Journal of Experimental Medicine, vol.65, issue.6, pp.1407-1412, 2006.
DOI : 10.1038/nature04515

N. Ozoren, J. Masumoto, L. Franchi, T. Kanneganti, and M. Body-malapel, Distinct Roles of TLR2 and the Adaptor ASC in IL-1??/IL-18 Secretion in Response to Listeria monocytogenes, The Journal of Immunology, vol.176, issue.7, pp.4337-4342, 2006.
DOI : 10.4049/jimmunol.176.7.4337

N. Tsuji, H. Tsutsui, E. Seki, K. Kuida, and H. Okamura, Roles of caspase-1 in Listeria infection in mice, International Immunology, vol.16, issue.2, pp.335-343, 2004.
DOI : 10.1093/intimm/dxh041

S. Mariathasan, D. Weiss, V. Dixit, and D. Monack, is dependent on the ASC/caspase-1 axis, The Journal of Experimental Medicine, vol.202, issue.8, pp.1043-1049, 2005.
DOI : 10.1016/0092-8674(95)90490-5

D. Hersh, D. Monack, M. Smith, N. Ghori, and S. Falkow, The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1, Proceedings of the National Academy of Sciences, vol.96, issue.5, pp.2396-2401, 1999.
DOI : 10.1073/pnas.96.5.2396

Y. Chen, M. Smith, K. Thirumalai, and A. Zychlinsky, A bacterial invasin induces macrophage apoptosis by binding directly to ICE, Embo J, vol.15, pp.3853-3860, 1996.

L. Franchi, A. Amer, M. Body-malapel, T. Kanneganti, and N. Ozoren, Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1?? in salmonella-infected macrophages, Nature Immunology, vol.160, issue.6, pp.576-582, 2006.
DOI : 10.1038/ni1346

E. Miao, C. Alpuche-aranda, M. Dors, A. Clark, and M. Bader, Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1?? via Ipaf, Nature Immunology, vol.48, issue.6, pp.569-575, 2006.
DOI : 10.1038/ni1344

A. Molofsky, B. Byrne, N. Whitfield, C. Madigan, and E. Fuse, infection, The Journal of Experimental Medicine, vol.7, issue.4, pp.1093-1104, 2006.
DOI : 10.1046/j.1365-2958.1999.01519.x

S. Mariathasan, K. Newton, D. Monack, D. Vucic, and D. French, Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf, Nature, vol.20, issue.6996, pp.213-218, 2004.
DOI : 10.1074/jbc.C300460200

A. Fortier, C. De-chastellier, S. Balor, and P. Gros, Birc1e/Naip5 rapidly antagonizes modulation of phagosome maturation by Legionella pneumophila, Cellular Microbiology, vol.59, issue.4, pp.910-923, 2007.
DOI : 10.1038/ni1305

URL : https://hal.archives-ouvertes.fr/hal-00165498

M. Lamkanfi, A. Amer, T. Kanneganti, R. Munoz-planillo, and G. Chen, The Nod-Like Receptor Family Member Naip5/Birc1e Restricts Legionella pneumophila Growth Independently of Caspase-1 Activation, The Journal of Immunology, vol.178, issue.12, pp.8022-8027, 2007.
DOI : 10.4049/jimmunol.178.12.8022

A. Amer, L. Franchi, T. Kanneganti, M. Body-malapel, and N. Ozoren, Regulation of Legionella Phagosome Maturation and Infection through Flagellin and Host Ipaf, Journal of Biological Chemistry, vol.281, issue.46, pp.35217-35223, 2006.
DOI : 10.1074/jbc.M604933200

T. Suzuki, L. Franchi, C. Toma, H. Ashida, and M. Ogawa, Differential Regulation of Caspase-1 Activation, Pyroptosis, and Autophagy via Ipaf and ASC in Shigella-Infected Macrophages, PLoS Pathogens, vol.202, issue.8, 2007.
DOI : 0022-1007(2005)202[1235:IOCWCP]2.0.CO;2

E. Diez, S. Lee, S. Gauthier, Z. Yaraghi, and M. Tremblay, Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila, Nature Genetics, vol.64, issue.1, pp.55-60, 2003.
DOI : 10.1006/geno.1999.5910

E. Wright, S. Goodart, J. Growney, V. Hadinoto, and M. Endrizzi, Naip5 Affects Host Susceptibility to the Intracellular Pathogen Legionella pneumophila, Current Biology, vol.13, issue.1, pp.27-36, 2003.
DOI : 10.1016/S0960-9822(02)01359-3

D. Zamboni, K. Kobayashi, T. Kohlsdorf, Y. Ogura, and E. Long, The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection, Nature Immunology, vol.71, issue.3, pp.318-325, 2006.
DOI : 10.1038/ni1305

T. Ren, D. Zamboni, C. Roy, W. Dietrich, and R. Vance, Flagellindeficient Legionella mutants evade caspase-1-and Naip5-mediated macrophage immunity, PLoS Pathog, vol.2, 2006.

J. Coers, R. Vance, M. Fontana, and W. Dietrich, Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways, Cellular Microbiology, vol.56, issue.10, pp.2344-2357, 2007.
DOI : 10.1038/ni1305

P. Li, H. Allen, S. Banerjee, S. Franklin, and L. Herzog, Mice deficient in IL-1??-converting enzyme are defective in production of mature IL-1?? and resistant to endotoxic shock, Cell, vol.80, issue.3, pp.401-411, 1995.
DOI : 10.1016/0092-8674(95)90490-5

H. Takada, S. Yokoyama, and S. Yang, Enhancement of endotoxin activity by muramyldipeptide, Journal of Endotoxin Research, vol.8, issue.5, pp.337-342, 2002.
DOI : 10.1179/096805102125000669

A. Uehara, S. Yang, Y. Fujimoto, K. Fukase, and S. Kusumoto, Muramyldipeptide and diaminopimelic acid-containing desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NOD1-dependent manner, respectively, in human, Cellular Microbiology, vol.163, issue.1, pp.53-61, 2005.
DOI : 10.1111/j.1462-5822.2004.00433.x

D. Van-heel, S. Ghosh, M. Butler, K. Hunt, and A. Lundberg, Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease, The Lancet, vol.365, issue.9473, pp.1794-1796, 2005.
DOI : 10.1016/S0140-6736(05)66582-8

D. Van-heel, S. Ghosh, M. Butler, K. Hunt, and B. Foxwell, Synergistic enhancement of Toll-like receptor responses by NOD1 activation, European Journal of Immunology, vol.278, issue.8, pp.2471-2476, 2005.
DOI : 10.1002/eji.200526296

D. Van-heel, S. Ghosh, K. Hunt, C. Mathew, and A. Forbes, Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease, Gut, vol.54, issue.11, pp.1553-1537, 2005.
DOI : 10.1136/gut.2005.065888

S. Yang, R. Tamai, S. Akashi, O. Takeuchi, and S. Akira, Synergistic Effect of Muramyldipeptide with Lipopolysaccharide or Lipoteichoic Acid To Induce Inflammatory Cytokines in Human Monocytic Cells in Culture, Infection and Immunity, vol.69, issue.4, pp.2045-2053, 2001.
DOI : 10.1128/IAI.69.4.2045-2053.2001

J. Fritz, S. Girardin, C. Fitting, C. Werts, and D. Mengin-lecreulx, Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists, European Journal of Immunology, vol.10, issue.8, pp.2459-2470, 2005.
DOI : 10.1002/eji.200526286

H. Tada, S. Aiba, K. Shibata, T. Ohteki, and H. Takada, Synergistic Effect of Nod1 and Nod2 Agonists with Toll-Like Receptor Agonists on Human Dendritic Cells To Generate Interleukin-12 and T Helper Type 1 Cells, Infection and Immunity, vol.73, issue.12, pp.7967-7976, 2005.
DOI : 10.1128/IAI.73.12.7967-7976.2005

G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity, Nature Reviews Immunology, vol.3, issue.2, pp.133-146, 2003.
DOI : 10.1038/nri1001

J. Fritz, L. Bourhis, L. Sellge, G. Magalhaes, J. Fsihi et al., Nod1-Mediated Innate Immune Recognition of Peptidoglycan Contributes to the Onset of Adaptive Immunity, Immunity, vol.26, issue.4, pp.445-459, 2007.
DOI : 10.1016/j.immuni.2007.03.009

S. Schnyder-candrian, D. Togbe, I. Couillin, I. Mercier, and F. Brombacher, Interleukin-17 is a negative regulator of established allergic asthma, The Journal of Experimental Medicine, vol.87, issue.12, pp.2715-2725, 2006.
DOI : 10.1016/S0022-1759(98)00204-X

C. Sutton, C. Brereton, B. Keogh, K. Mills, and E. Lavelle, A crucial role for interleukin (IL)-1 in the induction of IL-17???producing T cells that mediate autoimmune encephalomyelitis, The Journal of Experimental Medicine, vol.203, issue.7, pp.1685-1691, 2006.
DOI : 10.1074/jbc.M308809200

A. Bagchi, E. Herrup, H. Warren, J. Trigilio, and H. Shin, MyD88-Dependent and MyD88-Independent Pathways in Synergy, Priming, and Tolerance between TLR Agonists, The Journal of Immunology, vol.178, issue.2, pp.1164-1171, 2007.
DOI : 10.4049/jimmunol.178.2.1164

N. Serbina, W. Kuziel, R. Flavell, S. Akira, and B. Rollins, Sequential MyD88-Independent and -Dependent Activation of Innate Immune Responses to Intracellular Bacterial Infection, Immunity, vol.19, issue.6, pp.891-901, 2003.
DOI : 10.1016/S1074-7613(03)00330-3

D. Weiss, B. Raupach, K. Takeda, S. Akira, and A. Zychlinsky, Toll-Like Receptors Are Temporally Involved in Host Defense, The Journal of Immunology, vol.172, issue.7, pp.4463-4469, 2004.
DOI : 10.4049/jimmunol.172.7.4463

J. Damiano, V. Oliveira, K. Welsh, and J. Reed, Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses, Biochemical Journal, vol.381, issue.1, pp.213-219, 2004.
DOI : 10.1042/BJ20031506

A. Mayor, F. Martinon, D. Smedt, T. Petrilli, V. Tschopp et al., A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses, Nature Immunology, vol.8, issue.5, pp.497-503, 2007.
DOI : 10.1038/ni1459

C. Mcdonald, F. Chen, V. Ollendorff, Y. Ogura, and S. Marchetto, A Role for Erbin in the Regulation of Nod2-dependent NF-??B Signaling, Journal of Biological Chemistry, vol.280, issue.48, pp.40301-40309, 2005.
DOI : 10.1074/jbc.M508538200

L. Franchi, C. Mcdonald, T. Kanneganti, A. Amer, and G. Nunez, Nucleotide-Binding Oligomerization Domain-Like Receptors: Intracellular Pattern Recognition Molecules for Pathogen Detection and Host Defense, The Journal of Immunology, vol.177, issue.6, pp.3507-3513, 2006.
DOI : 10.4049/jimmunol.177.6.3507

T. Kanneganti, M. Lamkanfi, Y. Kim, G. Chen, and J. Park, Pannexin-1-Mediated Recognition of Bacterial Molecules Activates the Cryopyrin Inflammasome Independent of Toll-like Receptor Signaling, Immunity, vol.26, issue.4, pp.433-443, 2007.
DOI : 10.1016/j.immuni.2007.03.008

F. Sutterwala, Y. Ogura, M. Szczepanik, M. Lara-tejero, and G. Lichtenberger, Critical Role for NALP3/CIAS1/Cryopyrin in Innate and Adaptive Immunity through Its Regulation of Caspase-1, Immunity, vol.24, issue.3, pp.317-327, 2006.
DOI : 10.1016/j.immuni.2006.02.004

J. Duncan, D. Bergstralh, Y. Wang, S. Willingham, and Z. Ye, Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling, Proceedings of the National Academy of Sciences, vol.104, issue.19, pp.8041-8046, 2007.
DOI : 10.1073/pnas.0611496104

L. Franchi, T. Kanneganti, G. Dubyak, and G. Nunez, Differential Requirement of P2X7 Receptor and Intracellular K+ for Caspase-1 Activation Induced by Intracellular and Extracellular Bacteria, Journal of Biological Chemistry, vol.282, issue.26, pp.18810-18818, 2007.
DOI : 10.1074/jbc.M610762200

V. Petrilli, S. Papin, C. Dostert, A. Mayor, and F. Martinon, Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration, Cell Death and Differentiation, vol.282, issue.9, pp.1583-1589, 2007.
DOI : 10.1128/MCB.26.3.735-742.2006

S. Banga, P. Gao, X. Shen, V. Fiscus, and W. Zong, Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family, Proceedings of the National Academy of Sciences, vol.104, issue.12, pp.5121-5126, 2007.
DOI : 10.1073/pnas.0611030104

T. Ganz, Defensins: antimicrobial peptides of innate immunity, Nature Reviews Immunology, vol.3, issue.9, pp.710-720, 2003.
DOI : 10.1038/nri1180

D. Ghosh, E. Porter, B. Shen, S. Lee, and D. Wilk, Paneth cell trypsin is the processing enzyme for human defensin-5, Nature Immunology, vol.3, issue.6, pp.583-590, 2002.
DOI : 10.1038/ni797

C. Wilson, K. Heppner, L. Rudolph, and L. Matrisian, The metalloproteinase matrilysin is preferentially expressed by epithelial cells in a tissue-restricted pattern in the mouse., Molecular Biology of the Cell, vol.6, issue.7, pp.851-869, 1995.
DOI : 10.1091/mbc.6.7.851

D. Islam, L. Bandholtz, J. Nilsson, H. Wigzell, and B. Christensson, Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator, Nature Medicine, vol.7, issue.2, pp.180-185, 2001.
DOI : 10.1038/84627

N. Salzman, M. Chou, H. De-jong, L. Liu, and E. Porter, Enteric Salmonella Infection Inhibits Paneth Cell Antimicrobial Peptide Expression, Infection and Immunity, vol.71, issue.3, pp.1109-1115, 2003.
DOI : 10.1128/IAI.71.3.1109-1115.2003

L. Peyrin-biroulet, C. Vignal, R. Dessein, M. Simonet, and P. Desreumaux, NODs in defence: from vulnerable antimicrobial peptides to chronic inflammation, Trends in Microbiology, vol.14, issue.10, pp.432-438, 2006.
DOI : 10.1016/j.tim.2006.08.008

E. Voss, J. Wehkamp, K. Wehkamp, E. Stange, and J. Schroder, NOD2/CARD15 Mediates Induction of the Antimicrobial Peptide Human Beta-defensin-2, Journal of Biological Chemistry, vol.281, issue.4, pp.2005-2011, 2006.
DOI : 10.1074/jbc.M511044200

S. Uematsu, M. Jang, N. Chevrier, Z. Guo, and Y. Kumagai, Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells, Nature Immunology, vol.170, issue.8, pp.868-874, 2006.
DOI : 10.1038/44593

I. Boneca, O. Dussurget, D. Cabanes, M. Nahori, and S. Sousa, evasion from the host innate immune system, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.997-1002, 2007.
DOI : 10.1073/pnas.0609672104

URL : https://hal.archives-ouvertes.fr/pasteur-00139188

C. Chaput, C. Ecobichon, N. Cayet, S. Girardin, and C. Werts, Role of AmiA in the Morphological Transition of Helicobacter pylori and in Immune Escape, PLoS Pathogens, vol.276, issue.9, 2006.
DOI : 10.1371/journal.ppat.0020097.sg006

URL : https://hal.archives-ouvertes.fr/pasteur-00139174

D. Kelly, J. Campbell, T. King, G. Grant, and E. Jansson, Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-?? and RelA, Nature Immunology, vol.5, issue.1, pp.104-112, 2004.
DOI : 10.1038/ni1018

S. Mukherjee, G. Keitany, Y. Li, Y. Wang, and H. Ball, Yersinia YopJ Acetylates and Inhibits Kinase Activation by Blocking Phosphorylation, Science, vol.312, issue.5777, pp.1211-1214, 2006.
DOI : 10.1126/science.1126867

L. Arbibe, D. Kim, E. Batsche, T. Pedron, and B. Mateescu, An injected bacterial effector targets chromatin access for transcription factor NF-??B to alter transcription of host genes involved in immune responses, Nature Immunology, vol.98, issue.1, pp.47-56, 2007.
DOI : 10.1038/ni1423

A. Perrin, X. Jiang, C. Birmingham, N. So, and J. Brumell, Recognition of Bacteria in the Cytosol of Mammalian Cells by the Ubiquitin System, Current Biology, vol.14, issue.9, pp.806-811, 2004.
DOI : 10.1016/j.cub.2004.04.033

T. Hawn, A. Verbon, K. Lettinga, L. Zhao, and S. Li, A Common Dominant TLR5 Stop Codon Polymorphism Abolishes Flagellin Signaling and Is Associated with Susceptibility to Legionnaires' Disease, The Journal of Experimental Medicine, vol.66, issue.10, pp.1563-1572, 2003.
DOI : 10.1016/S1074-7613(01)00201-1

C. Picard, A. Puel, M. Bonnet, C. Ku, and J. Bustamante, Pyogenic Bacterial Infections in Humans with IRAK-4 Deficiency, Science, vol.299, issue.5615, pp.2076-2079, 2003.
DOI : 10.1126/science.1081902

O. Filipe-santos, J. Bustamante, M. Haverkamp, E. Vinolo, and C. Ku, X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production, The Journal of Experimental Medicine, vol.160, issue.7, pp.1745-1759, 2006.
DOI : 10.1172/JCI200421345

URL : https://hal.archives-ouvertes.fr/pasteur-00162856

A. Casrouge, S. Zhang, C. Eidenschenk, E. Jouanguy, and A. Puel, Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency, Science, vol.314, issue.5797, pp.308-312, 2006.
DOI : 10.1126/science.1128346

C. Khor, S. Chapman, F. Vannberg, A. Dunne, and C. Murphy, A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis, Nature Genetics, vol.65, issue.4, pp.523-528, 2007.
DOI : 10.1038/ng1976

H. Hoffman, J. Mueller, D. Broide, A. Wanderer, and R. Kolodner, Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome, Nature Genetics, vol.29, issue.3, pp.301-305, 2001.
DOI : 10.1038/ng756

T. Hawn, H. Wu, J. Grossman, B. Hahn, and B. Tsao, A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus, Proceedings of the National Academy of Sciences, vol.102, issue.30, pp.10593-10597, 2005.
DOI : 10.1073/pnas.0501165102

J. Hugot, M. Chamaillard, H. Zouali, S. Lesage, and J. Cezard, Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.599-603, 2001.
DOI : 10.1038/35079107

Y. Ogura, D. Bonen, N. Inohara, D. Nicolae, and F. Chen, A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease, Nature, vol.411, issue.6837, pp.603-606, 2001.
DOI : 10.1038/35079114

A. Nenci, C. Becker, A. Wullaert, R. Gareus, and G. Van-loo, Epithelial NEMO links innate immunity to chronic intestinal inflammation, Nature, vol.54, issue.7135, pp.557-561, 2007.
DOI : 10.1038/nature05698

Y. Jin, C. Mailloux, K. Gowan, S. Riccardi, and G. Laberge, in Vitiligo-Associated Multiple Autoimmune Disease, New England Journal of Medicine, vol.356, issue.12, pp.1216-1225, 2007.
DOI : 10.1056/NEJMoa061592

T. Bestor and D. Bourc-'his, Genetics and epigenetics of hydatidiform moles, Nature Genetics, vol.43, issue.3, pp.274-276, 2006.
DOI : 10.1038/ng0306-274

S. Murdoch, U. Djuric, B. Mazhar, M. Seoud, and R. Khan, Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans, Nature Genetics, vol.25, issue.3, pp.300-302, 2006.
DOI : 10.1038/ng1740

U. Djuric, O. El-maarri, B. Lamb, R. Kuick, and M. Seoud, Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation, Human Genetics, vol.13, issue.3, pp.390-395, 2006.
DOI : 10.1007/s00439-006-0192-3

T. Kinoshita, Y. Wang, M. Hasegawa, R. Imamura, and T. Suda, PYPAF3, a PYRIN-containing APAF-1-like Protein, Is a Feedback Regulator of Caspase-1-dependent Interleukin-1?? Secretion, Journal of Biological Chemistry, vol.280, issue.23, pp.21720-21725, 2005.
DOI : 10.1074/jbc.M410057200

K. Okada, E. Hirota, Y. Mizutani, T. Fujioka, and T. Shuin, Oncogenic role of NALP7 in testicular seminomas, Cancer Science, vol.169, issue.12, pp.949-954, 2004.
DOI : 10.1074/jbc.M100433200