K. Terpend, F. Boisgerault, M. Blaton, J. Desjeux, and M. Heyman, Protein transport and processing by human HT29-19A intestinal cells: effect of interferon gamma, Gut, vol.42, issue.4, pp.538-545, 1998.
DOI : 10.1136/gut.42.4.538

L. Mayer, D. Eisenhardt, P. Salomon, W. Bauer, R. Plous et al., Expression of class II molecules on intestinal epithelial cells in humans, Gastroenterology, vol.100, issue.1, pp.3-12, 1991.
DOI : 10.1016/0016-5085(91)90575-6

N. Cerf-bensussan, A. Quaroni, J. Kurnick, and A. Bhan, Intraepithelial lymphocytes modulate Ia expression by intestinal epithelial cells, J Immunol, vol.132, pp.2244-2252, 1984.

D. Kvale, P. Krajci, and P. Brandtzaeg, Expression and Regulation of Adhesion Molecules ICAM-1 (CD54) and LFA-3 (CD58) in Human Intestinal Epithelial Cell Lines, Scandinavian Journal of Immunology, vol.48, issue.6, pp.669-676, 1992.
DOI : 10.1038/331624a0

Y. Hashimoto and T. Komuro, Close relationships between the cells of the immune system and the epithelial cells in the rat small intestine, Cell and Tissue Research, vol.254, issue.1, pp.41-47, 1988.
DOI : 10.1007/BF00220015

G. Van-niel, G. Raposo, C. Candalh, M. Boussac, R. Hershberg et al., Intestinal epithelial cells secrete exosome???like vesicles, Gastroenterology, vol.121, issue.2, pp.337-349, 2001.
DOI : 10.1053/gast.2001.26263

G. Raposo, H. Nijman, W. Stoorvogel, R. Liejendekker, C. Harding et al., B lymphocytes secrete antigen-presenting vesicles, Journal of Experimental Medicine, vol.183, issue.3, pp.1161-1172, 1996.
DOI : 10.1084/jem.183.3.1161

L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament et al., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes, Nature Medicine, vol.180, issue.5, pp.594-600, 1998.
DOI : 10.1073/pnas.94.7.3262

J. Heath, S. White, C. Johnstone, B. Catimel, R. Simpson et al., The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily, Proceedings of the National Academy of Sciences, vol.94, issue.2, pp.469-474, 1997.
DOI : 10.1073/pnas.94.2.469

S. Welt, C. Divgi, F. Real, S. Yeh, P. Garin-chesa et al., Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33., Journal of Clinical Oncology, vol.8, issue.11, pp.1894-1906, 1990.
DOI : 10.1200/JCO.1990.8.11.1894

C. Johnstone, N. Tebbutt, H. Abud, S. White, K. Stenvers et al., Characterization of mouse A33 antigen, a definitive marker for basolateral surfaces of intestinal epithelial cells, Am J Physiol Gastrointest Liver Physiol, vol.279, pp.500-510, 2000.

G. Van-niel, J. Mallegol, C. Bevilacqua, C. Candalh, S. Brugiere et al., Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice, Gut, vol.52, issue.12, pp.1690-1697, 2003.
DOI : 10.1136/gut.52.12.1690

R. Hershberg, P. Framson, D. Cho, L. Lee, S. Kovats et al., Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing., Journal of Clinical Investigation, vol.100, issue.1, pp.204-215, 1997.
DOI : 10.1172/JCI119514

S. Welt, C. Divgi, F. Real, S. Yeh, P. Garin-chesa et al., Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33., Journal of Clinical Oncology, vol.8, issue.11, pp.1894-1906, 1990.
DOI : 10.1200/JCO.1990.8.11.1894

G. Raposo, D. Tenza, S. Mecheri, R. Peronet, C. Bonnerot et al., Accumulation of Major Histocompatibility Complex Class II Molecules in Mast Cell Secretory Granules and Their Release upon Degranulation, Molecular Biology of the Cell, vol.8, issue.12, pp.2631-2645, 1997.
DOI : 10.1091/mbc.8.12.2631

A. Woods, H. Chen, M. Trumbauer, A. Sirotina, R. Cummings et al., Human major histocompatibility complex class II-restricted T cell responses in transgenic mice, Journal of Experimental Medicine, vol.180, issue.1, pp.173-181, 1994.
DOI : 10.1084/jem.180.1.173

T. Matysiak-budnik, C. Candalh, C. Dugave, A. Namane, C. Cellier et al., Alterations of the intestinal transport and processing of gliadin peptides in celiac disease, Gastroenterology, vol.125, issue.3, pp.696-707, 2003.
DOI : 10.1016/S0016-5085(03)01049-7

L. Wicker, S. Chen, G. Nepom, J. Elliott, D. Freed et al., Naturally processed T cell epitopes from human glutamic acid decarboxylase identified using mice transgenic for the type 1 diabetes-associated human MHC class II allele, DRB1*0401., Journal of Clinical Investigation, vol.98, issue.11, pp.2597-2603, 1996.
DOI : 10.1172/JCI119079

J. Escola, M. Kleijmeer, W. Stoorvogel, J. Griffith, Y. O. Geuze et al., Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes and on Exosomes Secreted by Human B-lymphocytes, Journal of Biological Chemistry, vol.273, issue.32, pp.20121-20127, 1998.
DOI : 10.1074/jbc.273.32.20121

C. Kim, H. Quarsten, E. Bergseng, C. Khosla, and L. Sollid, Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease, Proceedings of the National Academy of Sciences, vol.101, issue.12, pp.4175-4179, 2004.
DOI : 10.1073/pnas.0306885101

B. Fevrier and G. Raposo, Exosomes: endosomal-derived vesicles shipping extracellular messages, Current Opinion in Cell Biology, vol.16, issue.4, pp.415-421, 2004.
DOI : 10.1016/j.ceb.2004.06.003

M. Hemler, Tetraspanin Proteins Mediate Cellular Penetration, Invasion, and Fusion Events and Define a Novel Type of Membrane Microdomain, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.397-422, 2003.
DOI : 10.1146/annurev.cellbio.19.111301.153609

C. Boucheix and E. Rubinstein, Tetraspanins, Cellular and Molecular Life Sciences, vol.58, issue.9, pp.1189-1205, 2001.
DOI : 10.1007/PL00000933

URL : https://hal.archives-ouvertes.fr/inserm-00724944

S. Levy, S. Todd, and H. Maecker, CD81 (TAPA-1): A MOLECULE INVOLVED IN SIGNAL TRANSDUCTION AND CELL ADHESION IN THE IMMUNE SYSTEM, Annual Review of Immunology, vol.16, issue.1, pp.89-109, 1998.
DOI : 10.1146/annurev.immunol.16.1.89

C. Hammond, L. Denzin, M. Pan, J. Griffith, H. Geuze et al., The tetraspan protein CD82 is a resident of MHC class II compartments where it associates with HLA-DR, -DM, and -DO molecules, J Immunol, vol.161, pp.3282-3291, 1998.

J. Porter and N. Hogg, Integrins take partners: cross-talk between integrins and other membrane receptors, Trends in Cell Biology, vol.8, issue.10, pp.390-396, 1998.
DOI : 10.1016/S0962-8924(98)01344-0

E. Rubinstein, L. Naour, F. Lagaudriere-gesbert, C. Billard, M. Conjeaud et al., CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins, European Journal of Immunology, vol.55, issue.11, pp.2657-2665, 1996.
DOI : 10.1002/eji.1830261117

K. Denzer, M. Van-eijk, M. Kleijmeer, E. Jakobson, C. De-groot et al., Follicular Dendritic Cells Carry MHC Class II-Expressing Microvesicles at Their Surface, The Journal of Immunology, vol.165, issue.3, pp.1259-1265, 2000.
DOI : 10.4049/jimmunol.165.3.1259

C. Thery, L. Duban, E. Segura, P. Veron, O. Lantz et al., Indirect activation of na??ve CD4+ T cells by dendritic cell???derived exosomes, Nature Immunology, vol.3, issue.12, pp.1156-1162, 2002.
DOI : 10.1038/ni854

H. Vincent-schneider, P. Stumptner-cuvelette, D. Lankar, S. Pain, G. Raposo et al., Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells, International Immunology, vol.14, issue.7, pp.713-722, 2002.
DOI : 10.1093/intimm/dxf048

. Endocytosis, Intracellular Sorting and Processing of Exosomes by Dendritic Cells, Blood, vol.104, pp.3258-3266, 2004.

D. Skokos, H. Botros, C. Demeure, J. Morin, R. Peronet et al., Mast Cell-Derived Exosomes Induce Phenotypic and Functional Maturation of Dendritic Cells and Elicit Specific Immune Responses In Vivo, The Journal of Immunology, vol.170, issue.6, pp.3037-3045, 2003.
DOI : 10.4049/jimmunol.170.6.3037

A. Clayton, A. Turkes, H. Navabi, M. Mason, and Z. Tabi, Induction of heat shock proteins in B-cell exosomes, Journal of Cell Science, vol.118, issue.16, pp.3631-3638, 2005.
DOI : 10.1242/jcs.02494