A. J. Thrasher, Gene therapy: great expectations?, Med J Aust, vol.182, issue.9, pp.440-441, 2005.

J. M. Derry, H. D. Ochs, and U. Francke, Isolation of a novel gene mutated in Wiskott-Aldrich syndrome, WASPbase.html. (Database of published WAS gene mutations created by K. Imai (see reference 9) and updated, pp.635-679, 1929.
DOI : 10.1016/0092-8674(94)90528-2

K. E. Sullivan, C. A. Mullen, and R. M. Blaese, A multiinstitutional survey of the Wiskott-Aldrich syndrome, The Journal of Pediatrics, vol.125, issue.6, pp.876-85, 1994.
DOI : 10.1016/S0022-3476(05)82002-5

S. Dupuis-girod, J. Medioni, and E. Haddad, Autoimmunity in Wiskott-Aldrich Syndrome: Risk Factors, Clinical Features, and Outcome in a Single-Center Cohort of 55 Patients, PEDIATRICS, vol.111, issue.5, pp.622-629, 2003.
DOI : 10.1542/peds.111.5.e622

A. Shcherbina, F. Candotti, and F. S. Rosen, High incidence of lymphomas in a subgroup of wiskott-aldrich syndrome patients, British Journal of Haematology, vol.90, issue.3, pp.529-559, 2003.
DOI : 10.1002/(SICI)1098-1004(1999)14:1<54::AID-HUMU7>3.3.CO;2-5

H. D. Ochs and A. J. Thrasher, The Wiskott-Aldrich syndrome, Journal of Allergy and Clinical Immunology, vol.117, issue.4, pp.725-763, 2006.
DOI : 10.1016/j.jaci.2006.02.005

K. Imai, T. Morio, and Y. Zhu, Clinical course of patients with WASP gene mutations, Blood, vol.103, issue.2, pp.456-64, 2004.
DOI : 10.1182/blood-2003-05-1480

Y. Jin, C. Mazza, and J. R. Christie, Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation ?? Large study of WAS gene mutations correlated with a clinical score and protein expression, showing a correlation between genotype and phenotype. 11 Genotype-proteotype linkage in the Wiskott-Aldrich syndrome ? Study on WAS gene mutations providing an in-depth knowledge of the molecular effects of the mutations and confirming the existence of a genotype proteotype correlation The Wiskott-Aldrich syndrome protein: forging the link between actin and cell activation, Blood J Immunol Immunol Rev, vol.104, issue.192, pp.4010-4019, 2003.

S. Burns, G. O. Cory, and W. Vainchenker, Mechanisms of WASp-mediated hematologic and immunologic disease Expression of Wiskott-Aldrich syndrome protein (WASP) gene during hematopoietic differentiation A 5' regulatory sequence containing two Ets motifs controls the expression of the Wiskott-Aldrich syndrome protein (WASP) gene in human hematopoietic cells, Blood Blood Blood, vol.104, issue.1512, pp.3454-62, 1997.

T. L. Hagemann and S. P. Kwan, The Identification and Characterization of Two Promoters and the Complete Genomic Sequence for the Wiskott???Aldrich Syndrome Gene, Biochemical and Biophysical Research Communications, vol.256, issue.1, pp.104-113, 1999.
DOI : 10.1006/bbrc.1999.0292

L. Dupre, S. Trifari, and A. Follenzi, Lentiviral vector-mediated gene transfer in T cells from Wiskott-Aldrich syndrome patients leads to functional correction ? First demonstration of efficacy of a lentiviral vector encoding the WAS gene under its endogenous promoter. 18 Lentiviral vectors transcriptionally targeted to hematopoietic cells by WASP gene proximal promoter sequences Lentiviral vectors targeting WASp expression to hematopoietic cells, efficiently transduce and correct cells from WAS patients ? First demonstration of correction of WAS patient cells with a lentiviral vector utilizing the native WAS gene promoter, Mol Ther Gene Ther Gene Ther Badour, K., M.K. McGavin, J. Zhang, et al. Proc Natl Acad Sci, vol.10, issue.1045, pp.903-918, 2004.

C. Silvin, B. Belisle, and A. Abo, A Role for Wiskott-Aldrich Syndrome Protein in T-cell Receptor-mediated Transcriptional Activation Independent of Actin Polymerization, Journal of Biological Chemistry, vol.276, issue.24, pp.276-21450, 2001.
DOI : 10.1074/jbc.M010729200

W. Huang, H. D. Ochs, and B. Dupont, The Wiskott-Aldrich syndrome protein regulates nuclear translocation of NFAT2 and NF-kappa B (RelA) independently of its role in filamentous actin polymerization and actin cytoskeletal rearrangement, J Immunol, issue.5, pp.174-2602, 2005.

D. D. Billadeau and J. K. Burkhardt, Regulation of Cytoskeletal Dynamics at the Immune Synapse: New Stars Join the Actin Troupe, Traffic, vol.167, issue.11, pp.1451-60, 2006.
DOI : 10.1111/j.1600-0854.2006.00491.x

S. B. Snapper and F. S. Rosen, A Family of WASPs, New England Journal of Medicine, vol.348, issue.4, pp.350-351, 2003.
DOI : 10.1056/NEJMcibr001155

Y. Calle, H. C. Chou, and A. J. Thrasher, Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells, This review focused on cytoskeletal functions and migration, describes podosomes and their use in assessing WASp function, pp.460-469, 2004.
DOI : 10.1002/path.1651

L. Dupre, A. Aiuti, and S. Trifari, Wiskott-Aldrich Syndrome Protein Regulates Lipid Raft Dynamics during Immunological Synapse Formation, Immunity, vol.17, issue.2, pp.157-66, 2002.
DOI : 10.1016/S1074-7613(02)00360-6

C. Borg, A. Jalil, and D. Laderach, NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs, Blood, vol.104, issue.10, pp.3267-75, 2004.
DOI : 10.1182/blood-2004-01-0380

S. Trifari, G. Sitia, and A. Aiuti, Defective Th1 Cytokine Gene Transcription in CD4+ and CD8+ T Cells from Wiskott-Aldrich Syndrome Patients, The Journal of Immunology, vol.177, issue.10, pp.177-7451, 2006.
DOI : 10.4049/jimmunol.177.10.7451

S. Humblet-baron, B. Sather, and S. Anover, Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis, Journal of Clinical Investigation, vol.117, issue.2, pp.407-418, 2007.
DOI : 10.1172/JCI29539DS1

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764857

M. H. Maillard, V. Cotta-de-almeida, and F. Takeshima, regulatory T cells, The Journal of Experimental Medicine, vol.160, issue.2, pp.204-381, 2007.
DOI : 10.1084/jem.194.7.953

F. Marangoni, S. Trifari, and S. Scaramuzza, natural regulatory T cells, The Journal of Experimental Medicine, vol.151, issue.2, pp.369-80, 2007.
DOI : 10.2337/diabetes.54.1.92

M. Adriani, J. Aoki, and R. Horai, Impaired in vitro regulatory T cell function associated with Wiskott???Aldrich syndrome, Clinical Immunology, vol.124, issue.1, pp.41-49, 2007.
DOI : 10.1016/j.clim.2007.02.001

V. I. Pivniouk, S. B. Snapper, and A. Kettner, Impaired signaling via the high-affinity IgE receptor in Wiskott-Aldrich syndrome protein-deficient mast cells, International Immunology, vol.15, issue.12, pp.15-1431, 2003.
DOI : 10.1093/intimm/dxg148

S. B. Snapper, P. Meelu, and D. Nguyen, WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo, Journal of Leukocyte Biology, vol.77, issue.6, pp.77-993, 2005.
DOI : 10.1189/jlb.0804444

C. A. Mullen, K. D. Anderson, and R. M. Blaese, Splenectomy and/or bone marrow transplantation in the management of the Wiskott-Aldrich syndrome: long-term followup of 62 cases, Blood, issue.10, pp.82-2961, 1993.

T. S. Strom, X. Li, and J. M. Cunningham, Correction of the murine Wiskott-Aldrich syndrome phenotype by hematopoietic stem cell transplantation, Blood, vol.99, issue.12, pp.99-4626, 2002.
DOI : 10.1182/blood-2001-12-0319

L. Dupre, F. Marangoni, and S. Scaramuzza, Efficacy of Gene Therapy for Wiskott- Aldrich Syndrome Using a WAS Promoter/cDNA-Containing Lentiviral Vector and Nonlethal Irradiation ? First demonstration of the in vivo efficacy of a lentiviral vector encoding WAS under control of endogenous promoter, Hum Gene Ther, vol.54, 2006.

C. Lacout, E. Haddad, and S. Sabri, A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome, Blood, vol.102, issue.4, pp.1282-1291, 2003.
DOI : 10.1182/blood-2002-07-2099

T. Wada, S. H. Schurman, and M. Otsu, Somatic mosaicism in Wiskott-Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism, Proceedings of the National Academy of Sciences, vol.98, issue.15, pp.98-8697, 2001.
DOI : 10.1073/pnas.151260498

M. I. Lutskiy, D. S. Beardsley, and F. S. Rosen, Mosaicism of NK cells in a patient with Wiskott-Aldrich syndrome, Blood, vol.106, issue.8, pp.106-2815, 2005.
DOI : 10.1182/blood-2004-12-4724

A. Konno, T. Wada, and S. H. Schurman, Differential contribution of Wiskott-Aldrich syndrome protein to selective advantage in T- and B-cell lineages, Blood, vol.103, issue.2, pp.390-395, 2003.
DOI : 10.1182/blood-2003-05-1739

C. Baum, O. Kustikova, and U. Modlich, Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors, ?? Review of models that demonstrate and quantify the functional consequences of insertional mutagenesis, pp.253-63, 2006.
DOI : 10.1089/hum.2006.17.253

E. Montini, D. Cesana, and M. Schmidt, Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration ?? A first platform to assess the impact of vector design on insertional safety in vivo in mice. This study shows that retroviral vectors triggered the acceleration of tumor onset contingent on long terminal repeat activity whereas SIN lentiviral vectors did not. 63 Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity Insertional mutagenesis in gene therapy and stem cell biology ? Through knowledge acquired by insertional mutagenesis, this review links retroviral insertion sites to stem cell biology Transcription start regions in the human genome are favored targets for MLV integration, Nat Biotechnol Blood Curr Opin Hematol Science, vol.24, issue.1445626, pp.687-96, 2003.

C. E. Dunbar, Stem Cell Gene Transfer: Insights into Integration and Hematopoiesis from Primate Genetic Marking Studies, Annals of the New York Academy of Sciences, vol.103, issue.1, pp.178-82, 1044.
DOI : 10.1196/annals.1349.023

D. Palma, M. , E. Montini, and F. R. De-sio, Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells, Blood, vol.105, issue.6, pp.2307-2322, 2005.
DOI : 10.1182/blood-2004-03-0798

D. Valerio, M. P. Einerhand, and P. M. Wamsley, Retrovirus-mediated gene transfer into embryonal carcinoma and hemopoietic stem cells: expression from a hybrid long terminal repeat, Gene, vol.84, issue.2, pp.419-446, 1989.
DOI : 10.1016/0378-1119(89)90516-7

M. A. Kay, J. C. Glorioso, L. Naldini-piacibello, W. , S. Bruno et al., Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice, Nature Medicine, vol.7, issue.1, pp.33-40, 2001.
DOI : 10.1038/83324

R. Zufferey, D. Nagy, and R. J. Mandel, Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo, Nature Biotechnology, vol.88, issue.9, pp.871-876, 1997.
DOI : 10.1038/nbt0997-871

P. Escarpe, N. Zayek, and P. Chin, Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations, Molecular Therapy, vol.8, issue.2, pp.332-373, 2003.
DOI : 10.1016/S1525-0016(03)00167-9

R. Zufferey, T. Dull, and R. J. Mandel, Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery ?? Essential reference in vectorology, describing third-generation lentiviral vectors 74 Lentiviral vector integration sites in human NOD/SCID repopulating cells, J Virol J Gene Med, vol.72, issue.12 810, pp.9873-80, 1998.

C. Cattoglio, G. Facchini, and D. Sartori, Hot spots of retroviral integration in human CD34+ hematopoietic cells ? Detailed study of retroviral and lentiviral insertion sites in human CD34+ cells showing the higher frequency of integration of retroviral vector in hot-spots enriched in proto-oncogenes and genes controlling cell proliferation than lentiviral vectors, Blood, 2007.