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SUMMARY. The study of dynamical models of HIV infection, based on a
system of non-linear Ordinary Differential Equations (ODE), has consider-
ably improved the knowledge of its pathogenesis. While the first models
used simplified ODE systems and analyzed each patient separately, recent
works dealt with inference in non-simplified models borrowing strength from
the whole sample. The complexity of these models leads to great difficul-
ties for inference and only the Bayesian approach has been attempted by
now. We propose a full likelihood inference, adapting a Newton-like algo-
rithm for these particular models. We consider a relatively complex ODE
model for HIV infection and a model for the observations including the is-
sue of detection limits. We apply this approach to the analysis of a clinical
trial of antiretroviral therapy (ALBI ANRS 070) and we show that the whole

algorithm works well in a simulation study.
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1. Introduction

Studies of the human immunodeficiency virus (HIV) dynamics using biomath-
ematical models have considerably improved the knowledge of the pathogen-
esis of this infection. For instance, such studies have demonstrated the high
turnover of infected cells as well as that of free virions (Ho et al., 1995;
Perelson et al., 1996). These pioneering works considered models based on a
system of non-linear Ordinary Differential Equations (ODE) without closed-
form solution, which were simplified and linearized. The estimation of the
parameters was then performed for each subject using simple non-linear re-
gression methods (Perelson et al., 1996). Population approaches that esti-
mate parameters of simplified models using the data from all the subjects of
a sample have been proposed (Wu and Ding, 1999): such models are in the
framework of Non-Linear Mixed-Effect (NLME) models (Pinheiro and Bates,
2000). However, as noted by Huang et al. (2006), these linearized ODE mod-
els are not able to describe the course of the infection for a long-term period.
Moreover, only the virus dynamics is taken into account, neglecting the evo-
lution of the CD4+ T lymphocytes (CD4) count. Last, these models do not
include parameters such as treatment efficacy, and thus do not help much to
a better understanding of the mechanisms of the infection or an evaluation
of treatment effect: this is why it is important to work with non-simplified
models (that is, based on non-linear ODE systems) which are able to repre-
sent the complexity of the dynamics. Several authors (Putter et al., 2002;
Huang et al., 2006) have attacked the ambitious program of treating these
models in a population context, all using a Bayesian approach. The two

above-mentioned difficulties are combined: non closed-form of the solution
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of the ODE system and numerical integrals involved in the likelihood. In the
Bayesian approach the direct numerical integrations are avoided and the ap-
proach relies on the MCMC algorithms to give the a posteriori distributions
of the parameters (Gilks et al., 1996). Of course a priori distributions have
to be given, and this is both an advantage (a priori knowledge can be put in
the model) and a drawback (it is not always clear what quantity of a priori
knowledge has been introduced) of the approach.

Although the Bayesian approach may be very attractive in such a complex
problem, the maximum likelihood approach retains some advantages: there
is no need to specify a prior: distributions, and there is a very well estab-
lished theory of inference, one can easily compare parametric models using
the Akaike criterion. Moreover, Newton-like methods may be relatively fast
compared to the heavy computation involved in Bayesian approach, con-
vergence criteria are well defined and last, at convergence, the algorithm
gives the maximum likelihood and an approximation of its second derivative,
which is an estimate of the information matrix. To avoid numerical diffi-
culties, mainly due to the need to compute numerically multiple integrals
involved in the likelihood, several approximations of the likelihood have been
proposed (Pinheiro and Bates, 2000) but they may lead to inconsistent esti-
mations (Ding and Wu, 2001). The problem is even more important when no
closed-form solution is available, making numerical derivatives of the likeli-
hood unstable and classical softwares inadequate (Putter et al., 2002; Huang
et al., 2006).

The aim of our work was to develop a maximum likelihood approach to

this problem based on an adaptation of a Newton-like method. We propose
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a method for calculating with a good precision the likelihood and its score
in ODE models; we show that a Newton-like method using only the first
derivatives is adequate. We illustrate this approach with data from a clinical
trial of antiviral therapy using a rather complex non-linear ODE model with
five components. We were able to take into account left-censored data coming
from the detection limits in the assays used for quantifying plasma HIV RNA
level (viral load). In fact, ignoring this censoring leads to important biases
in the estimation (Thiébaut et al., 2006).

The paper is organized as follows. In section 2, we describe the gen-
eral population ODE model together with the observations we get from this
model; in section 3, we present our inference approach, that is the likelihood
and our maximization algorithm. In section 4, we describe an HIV dynamics
model. In section 5, we analyse the data of the ALBI ANRS 070 trial. We

show in section 6 that the algorithm works well through a simulation study.

2. Statistical Model
2.1 Model for the system

Let us consider an ODE model for a population of subjects. For subject

1 with ¢ = 1, ...n, this can be written:

D (X (1), 69) )
x®(0) = h(g™)

where X () = (Xl(i) (t),..., X}? (t)) is the vector of the K state variables
(or components). We write X (t,£%) = X (t) to underline that &% com-
pletely determines the trajectories X (¢). We assume that f and h are
twice differentiable with respect to €7; £¢® = ( Y), - éi))’ (" for transpose)

is a vector of p individual parameters which appear naturally in the ODE
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system and have generally a biological interpretation. We introduce a par-
simonious model for é(i) to allow inter-individual variability: the variability
may be explained, through explanatory variables, or unexplained, and this
is accounted for by random effects. Similarly to generalized (mixed) linear
models, we introduce a link function which relates € to a linear model in-
volving explanatory variables and random effects. For sake of simplicity we
restrict to component-wise transforms:

{5/’ = ;(¢7),

~(; 7:/ ’I:, . (2)
=+ 27 B +wP b, 1<p

(2)

where ¢; is the intercept, z; and 'wl(i)

are the vectors of explanatory vari-
ables associated respectively to the fixed and to the random effects of the
Ith biological parameter. The B3;’s are vectors of regression coefficients as-
sociated to the fixed effects. We assume b(®) ~ AN(0,X), where b(® is the
individual vector of random effects of dimension q. Let A = (ap)r<i<4 the
lower triangular matrix with positive diagonal elements such that AA’ = X
(Cholesky decomposition). We can write b = Au® with u® ~ N(0, 1,).
2.2 Model for the observations

It often happens that not all the components of the system can be ob-
served. Functions ¢,,(.),m =1,..., M of RX to R are introduced to link the
potential observations to the original system; they are assumed to be twice
differentiable. These functions allow to observe only some of the components
of the original system, or observation of combinations of several components:
for instance the model may distinguish between non-infected and infected
CD4, but only the total number of CD4 is observed. These functions may

also include known transformations such as the logarithm; the g,,(.) are thus
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assumed completely known and will be called the observable components.
Let Yi;m denote the jth measurements of the mth observable component for

subject 4 at time ¢;;,,,; we assume that:

z(1) .

2

where the €;;,, are independent Gaussian with zero mean and variances o,.
The €;j,’s are supposed independent because they represent measurement
errors: this assumption can be roughly checked by looking at the correlations
between residuals (see section 5). Thus, both the observed dependencies for
the within-patient observations of a given biomarker and more generally the
correlations between the biomarkers Y’s are completely determined by the
mechanistic relationships between the X’s produced by f(.) in the model
(1). If necessary, the model could be extended by adding correlated random-
effects in model (3) or other covariance structures to reflect any between-
variables dependency not captured by f(.)

The model for the observation may be complicated by the detection limits
of assays leading to left-censored observations Yjj,,. This is the case for
HIV RNA concentration defined as the first observed component (m = 1)
in the following. We observe Y;;; or the event {Y;;; < (}, where ( is the

detection limit. The model can be easily generalized to upper detection

limits or detection limits depending on time.
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3. Inference
3.1 Log-Likelihood

Denoting d;; = Ijy;;>¢y, the full individual likelihood given the random
effects Eﬁ\u(i) is given by:

20\ 21 )% 2(0)
_ 1 1 (Y1 —g1(X(tij1,6 7)) ¢ —g1(X(ti1,€
YA S— -

J<nii

Yirm — g (X (133 €70\
I Qe (=) |
O'm\/% 2 Om

m>1, j<nim

where @ is the cumulative distribution function of the standard univariate
normal distribution. The observed individual likelihood Lo, is obtained from
E}}-\u(i) as:

Lo,= | L

R4

(u)p(u)du (4)

filu(i)
where ¢ is the multivariate normal density of N(0,1,). We will denote

L = log [’J—'-|u(i) and Lo, = log Lo, the full (given random effects)

Filu®
and| observed individual log-likelihoods, respectively. The global observed
log-likelihood is Lo = 3~ Lo,. The integrand in (4) is centered and scaled as
suggested for the adap‘éigx;le Gaussian quadrature in Pinheiro and Bates (2000)
and the integral is then computed with an efficient algorithm developed by
Genz and Keister (1996) (see Web Appendix A & C for more details).
3.2 Algorithm of Likelihood Mazximization

For likelihood inference, we propose a Newton-like method which uses
only the first derivatives of the log-likelihood (the score).
Computation of the score
The computation of the score proceeds in two stages: first compute the

score of the full likelihood given random effects; second compute the score of

the observed likelihood by integration using the relationships given by Louis

7
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(1982) and generalized by Commenges and Rondeau (2006); this approach

T

Z was used by Hedeker and Gibbons (1994) in another context. For simplicity,

QD

% we assume in this section that there is no censored data. For subject ¢

§ at the current point 8 = ((¢1)i<p, (B1)i=1,p, A = (aw)r<i<q, & = (01)1<nr) the

=

8 components of the full score can be written as follows:

=

- oL (%) p30) .

= (é) Filu'® 1 Ogm(X (tijm, € ")) ()

- U (0) = — T » - Yiim = g (X (13, €7))

g 7t 0g" mSMZj:Snim z 0" ’ ]

3 oL

N (%) .

8 B _ R @)

S f,-|u(i)( )= o Umu(i) (6)

O

3

0, oL . (@)

S (ay) fi|u(z) 1 =(9) (i) (i) Ogm (X (tijm, € "))
U o (0) = ——— = — (Yijm — 9m (X (tijm, & 7)) ) | wy Zwl”l (i

= fl|u( ) aall/ m<M, j<nim O'?n ( ) 1<p aé.l(/l/)

; pa0);
U (9) = oLy -y Yo — (X (t.€7))?  na

Flu® o} oy

Using the fact that:

Ogm(X(1,€7)) = Ogm(X (1, €")) 0X® (1, €Y
9e0 —k;( X (%) i

the computation of the full score requires to solve numerically the p systems

ox® &™) (
3

cle . . ) . .
of sensitivity equations pHO) see example in the Web Appendix B).
l

Then the observed scores can be deduced by Louis’ formula:

OLo, 1
Up, = 50 (Lo,) /Rq ﬁfilu(i) (u)Uﬂlu(i) (w)¢(u)du.

The integrals can be computed by adaptive Gaussian quadrature using the

same transformation as for the computation of Lp,. Then, the global ob-

served score is U =Up = > U, .

i<n
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The maximization algorithm

The Newton-Raphson method, or the more robust Marquardt algorithm
(Marquardt, 1963), is the most efficient algorithm when the log-likelihood is
not too far from a quadratic function. This approach requires to compute the
score U and the Hessian H at each current point ¢, of the maximization pro-
cedure. Although a semi-analytical expression for the Hessian could be ob-
tained with the same two-stages approach as for the score, the computational

burden would become unbearable and we propose to use an iterative method

in which H(6}) is replaced by G(0x) = > Uo,(0x)Ug,(0r) + 2U (01)U’ (6k)
i<n

(where v is a weighting coefficient). We have that n='G(6) converges toward
n~t1(6*) where I(6*) is the information matrix under the true probability, 6*
being the true parameter value. Thus G(6}) should be a good approximation
of H(6},) near the maximum since n~'H (f) itself converges toward n~'I(6*).
As for convergence criterion we use C'(6;) = U(60;,)G(0x)U (6;). C(6*) has
asymptotically a Xf; distribution; this gives an idea of which value should be
considered as “small”. Once the convergence is obtained one may use G (é) as
an estimator of I(6*) to build confidence intervals and Wald tests. However
since 6 is the value for which U(é) = 0, we may expect that the variance of
U computed in fis a negatively biased estimate of its variance at 6* (that is
I1(6%)). This bias is difficult to estimate in general. In the linear model with
known error variance, it can be shown that E[U(3)U’(3)] = %m(ﬁ)](ﬁ*),
where (3 is the vector of regression coefficients. By analogy we propose to esti-

A

mate [(0*) by A (0). The whole algorithm (iteration and convergence

criterion) has the property that it is invariant under any affine transforma-

tion of the parameters. Details about the implementation may be found in
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the Web Appendix C.
3.3 Expectations & Predictions

The expected trajectory can be obtained by simulating a sample of sub-
jects and averaging, for each time and each marker, over their values.

Also, individual predicted trajectories can be computed as X ©

(t) =
X(t,z(i)) where 5{” = ¢ + zl(i),,él + ’wl(i)/Aﬁ(i) and a® is the posterior
mode (given the data) of u(®. From this we can deduce individual predicted
trajectories of observed components. Then, the fit can be checked by com-

paring the predicted values of the components }A/ijm = gm(f( 2 (tijm)) with

the observations Y;,.

4. Biological Model
4.1 Motiwvating application

As an application of the proposed method, we aimed at estimating the
difference of treatment effects in a randomized clinical trial (Molina et al.,
1999). The ALBI ANRS 070 trial compared over 24 weeks the combination
of zidovudine plus lamivudine (AZT+3TC) with that of stavudine plus di-
danosine (ddI+d4T)(a third arm alternating from one regimen to another
was not considered in this paper). The inclusion criteria were CD4 > 200
cells/ L and HIV RNA level between 4 and 5 logyo copies/mL within 15 days
before entry into the study. Measurements were taken once a month up to

six months. Spaghetti plots of the data are shown on Figure 1 .
[Figure 1 about here.|

The primary outcome measure defined in the study protocol was the an-
tiretroviral effect as measured by the mean change in HIV RNA level be-

tween baseline and 24 weeks by use of the ultra-sensitive PCR assay with

10
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lower limit of quantification of 50 copies/mL (1.7 logyo). In the main analysis
of Molina et al. (1999), HIV RNA values reported as < 50 copies/mL were
considered equivalent to 50 copies/mL; 51 patients were included in each
treatment group. Over the 24-week period, HIV RNA level declined in the
two groups, with mean (SE) decreases at the end of the study of 1.26 (0.09)
logyo copies/mL in the AZT+3TC group and 2.26 (0.11) logyo copies/mL in
the ddI4-d4T group. The mean increase in CD4 count was larger in ddI+d4T
group than in AZT+3TC group (124 cells/uL vs. 62 cells/uL, p=0.012).
4.2 A mathematical model for HIV dynamics

Conventional models for HIV dynamics have involved target cells (mainly
uninfected CD4), infected cells producing viruses, and circulating viruses
(Perelson et al., 1996). Because the activation of CD4 has been recognized
as a central role in HIV pathogenesis (Grossman et al., 2000), the activated
state is worth distinguishing. Actually, activated cells make a better target
than quiescent cells and viral replication is rapid and efficient in activated
cells (Ribeiro et al., 2002). Also, it is useful to distinguish infectious and
non-infectious virions because non-infectious virions are predominant (Chun
et al., 1997). In the ALBI ANRS 070 trial, antiretroviral therapy included
reverse transcriptase inhibitors only. This type of antiretroviral drugs limits
cell infection by inhibiting reverse transcription of HIV RNA and thus was

modeled by limiting the new production of 7% through the parameter . The

11
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model can be written as:

(99 = N+ pT — aQ — 11Q
I =aQ — (1= TV; = pT — prT

= =)y TV — g T ()

Ly T

\d‘gzl = (1 = w)pr7T™ — 1, Vnr

where (), T', T are quiescent non-infected, activated non-infected, and ac-
tivated infected CD4 and V; and Vi are infectious and non-infectious free
virions, respectively. Figure 2 displays a graphical representation of the sys-

tem.
[Figure 2 about here.|

The definition of each parameter of this system of non-linear differential
equations is reported in Table 1. We make the assumption that before ini-
tiation of antiretroviral treatment the values of the state variables are that
of steady state of the ODE system with n = 0. This assumption implies
that the treatment is initiated far from initial infection. The steady state
assumption leads to the following initial conditions (where ¢ = 0 refers to

treatment initiation):

— Py
Q(O) - oz—l—u <>\ + w'y7r)
T(0) = 55
() = _L v _ (ptpT)pe
T (O> T s (a—i—uQ <)\ + w’y7r) wymT )
Vi(0) = ;U'v(iUiL‘Q (A+ Sl;;) p+7uT
Vir(0) = B2 (o (o ) — ot

4.3  The statistical model

We used the structure defined in section 2 to estimate the parameters of

the biological model (5). Because the study was not designed for dynamic

12



modelling, it was not possible to estimate all the parameters. In the present
study, the first measurement after therapy was performed four weeks later
rather than several hours in some studies of virus dynamics (Ho et al., 1995).
We consequently chose to fix the set (ug, fw, p, w) whose estimates can

be found in the literature (Table 1). The parameter v was at the limit of
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tion (because 0 < n@ < 1): 7@ = log % We introduced in the model
only one explanatory variable 2, which represented the treatment group:
20 = 0 for the AZT+3TC group and 2 = 1 for the ddI4+d4T group. i
represented the treatment effect for AZT+3TC in the logistic scale and
represented the differential effect of ddI+d4T relative to AZT+3TC in the
logistic scale: 7 = 7y + 23

Concerning the selection of random effects, we favored a forward selection
strategy because the number of random effects is limited by the amount of
information available as well as by the curse of dimensionality (the dimension
of the multiple integrals is equal to the number ¢ of random effects). Starting
with the model without random effect, we introduced one random effect
successively on each parameter and selected the one which most increased
the likelihood; then we proceeded to include a second random effect according
to the same criterion, and so on until the model with ¢ random effects was

not rejected by a likelihood ratio test (the distribution of the likelihood ratio

13
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statistic being a mixture of chi-square distributions).

Observable components g; and g, were transforms of the HIV RNA con-
centration and the total CD4 count respectively with g, = log1o(V; + V1)
and go = (Q + T +T*)%%. These transformations of HIV markers values are
commonly used for achieving normality and homoscedasticity of measure-

ment error distributions (Thiébaut et al., 2003).

[Table 1 about here.]

5. Analysis of the ALBI ANRS 070 data

We estimated the parameters of the statistical model described above using
repeated measurements of both the virus load and the total CD4 count from
the ALBI ANRS 070 data. The model for the observations (3) can be given

more explicitly:

{Ym = lOglO(VI(tijla é(i)) + VNI(tijla é(i))) +€ij1, J < ni
Vi = (Qti2€”) + T(tijo, €) + T (12, €”)° + iy j < o

We tried different starting values (increasing the variance parameters val-
ues by 10 folds, intercept value from 10 % to 100 %) and we obtained the
same convergence point up to small variations on the third signifcant digit.

The value for 4 obtained by profile likelihood was ¥ = —3. The estimates of

the model parameters are shown in Table 2.
[Table 2 about here.]

The empirical correlation between residuals R;;; and R;j5 where R;;1 =

Yiii — Yij1 and Rijo = Yije — Yije was equal to 0.017; this is an indication

that the proposed mechanistic modelling captures most of the dependency

14
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between the observed biomarkers. With the exception of the estimation of
« that was about ten fold higher compared to some values found in the
literature (Ribeiro et al., 2002), the estimated values of the other parameters
were in the same range as published values. For example, the confidence
interval for pr ([0.097;0.14]) was close to that reported by Ribeiro et al.
(2002) ([0.040;0.13]) as well as the confidence interval for pp« ([0.5;0.8]) to
that reported by Markowitz et al. (2003) ([0.6;1.4]).

The contrast § between the two antiretroviral regimen efficacies was
tested by a Wald test. It was found significantly different from zero with
a stable p-value over the plausible interval for 4 (p < 107%). The propor-
tion of cells not infected because of the treatment per each unit of time was
no=72.3% (ICy5 = [69.1;75.5]) in the AZT+3TC group and the difference
between between the two groups was 2.0 % (ICo; = [1.4;2.6] calculated by
the Delta-method). Interestingly, patients in the AZT+3TC group experi-
enced a similar first decline in HIV RNA level compared to d4T+ddI group.
However, after a period of about one month, the HIV RNA level increased,
leading to a rebound in the former group. The fit of the model predictions
was good in average (as shown in Figure 3) and at individual level (Figure
4). In Figure 3, from the second month, mean predicted values of virus load
are lower than the average of the observations; this is because the predic-
tions take censoring into account while the observations below the level of
detection (1.7logyg) were fixed at this threshold. Concerning the meaning
of retained random effects, o, might represent the individual difference in
thymic or hematopoietic function. Variation of activation rates between in-

dividuals that led to significant o, might reflect differences in susceptibility

15
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of activation between individuals. The individual variation of pz, might re-
flect the variation in the intensity of the immune response (e.g. cytotoxic

lymphocytes that kill infected cells) according to subjects.

[Figure 3 about here.]

[Figure 4 about here.|

6. Simulation study

In this section, we aim at analyzing the efficiency of our algorithm in term of
success of convergence, precision and validity of estimators. Data were sim-
ulated using values from the analysis of the ALBI ANRS 070 trial presented
in the former section. ¥ was held fixed at the value ¥ = —3. We simulated
trials of 100 patients, according to the typical schedule of the ANRS ALBI
070 trial. For each parameter, absolute bias, confidence interval coverage,
empirical standard deviations and estimated standard deviations were cal-
culated. Of note, the absolute bias of log transformed parameters can be
interpreted as a relative bias of parameters on natural scale. The initial val-
ues were selected as follows: ¢ = ¢/, =0,A = V10A*, o = 20* where
x refers to values in Table 2. The maximum number of iterations was fixed
at 25 for restricting the duration of the simulation study. Convergence be-
fore 25 iterations was successfully reached in 93% of simulations, and the
computation time was between two and three hours per simulation. In the
simulations where convergence was not achieved, convergence criteria value
indicated that the algorithm might converge but with further iterations. Re-
sults from 100 successful convergences are summarized in Table 8. The biases

were small in regard of the complexity of the model; the coverage rates of
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the confidence intervals were good and the variances were well estimated.
Although the results of this simulation study show that the algorithm is effi-
cient when the model is well specified, this does not warrant that it will be so
for real data. Furthermore, more general conclusions on the robustness and
efficiency of the algorithm would need an extension of the simulation study

over a larger set of plausible values for 6.

[Table 3 about here.]

7. Discussion

In this paper, we presented a robust method to fit non-linear mixed effects
models based on differential equations for which no closed-form is available.
This approach may be applied to any NLME models. Nevertheless, the
method requires some computational skills whereas simpler methods are of-
ten sufficient for usual NLME models (with closed-form). The approach was
applied to a clinical trial in HIV infection. The model fitted the HIV RNA
and CD4 data quite well, providing an in vivo estimation of the treatment
efficacy. Because of the non-linear interaction between CD4 and virus, the
HIV RNA dynamics was very sensitive to a difference in treatment efficacy.
Interestingly, the model predicted a viral rebound in the worst treatment
group after an initial steep decline although occurrence of HIV resistance
was not included in the model. In the present model, the viral rebound
can be explained by the joint dynamics of the virus and the CD4. During
the first period, the reduction of the rate of infection led to a decrease of
virus and an increase of the target cells. However, because the inhibition
of the virus infectivity was not strong enough in the AZT+3TC group and

because new target cells were available, this led to a rebound of viral load
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after about one month. Only biomathematical models based on system of
differential equations can fit such complex interaction between virus and im-
mune system. The present approach allows to estimate the treatment effect
using all available information (including biological knowledge to construct
the model) in a much more flexible way than classic multivariate longitu-
dinal models (Thiébaut et al., 2003). Then, the treatment efficacy can be
tested using only one statistical test compared to all potential comparisons
according to each marker at each given time.

One of the limitations of the present application is the impossibility of
estimating all parameters. In fact, the estimation of all parameters would
need more intensive schedules and/or the measurements of more compart-
ments such as activated CD4. However, a sensitivity analysis allowed us to
conclude that the estimate of the difference in treatment effects between the
two groups was robust.

We conclude that the use of such models to analyze clinical trial data
could help in having a better understanding of the treatment effect; however,
estimating all model parameters requires richer information than usual and

this needs to be planned in the study protocol.

8. Supplementary Materials
Web Appendices referenced in Section 3 are available under the Paper Infor-

mation link at the Biometrics website http://www.tibs.org/biometrics.
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Figure 2. Graphical representation of the system for HIV dynamics.
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Figure 3: Mean observed values of HIV RNA level (left) and total CD4 count (right)
according to the treatment group (A and A for the group AZT+3TC and ddI4+DA4T re-
spectively ) and mean predicted values (o and e for the group AZT+3TC and ddI+D4T
respectively) in ALBI ANRS 070 trial. The plain line represents the expected trajectory
for the group ddI4+D4T whereas the dashed line represents the expected trajectory for the
group AZT+3TC.
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A for the group AZT+3TC and ddI+DA4T respectively) in four patients.
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Table 1: Natural model parameters and values for which were fixed.

Parameter Meaning

a Activation rate of Q cells (day™1)
A Rate of Q cells production (uzlday_l)

T Death rate of T* cells (day~!)
T Number of virions per T™ cell

ur Death rate of T cells (day™!)
n Efficacy of treatment (proportion)

ocD4 Standard deviation of the observation error of (Q + T + T*)0-%

ocv Standard deviation of the observation error of logio(Vr + Vnr)
ol Infection rate of T cells per virion

Value Reference

HQ Death rate of Q cells 0.00014 Mclean and Michie, 1995
Lo Clearance of free virions 30.0 Ramratnam et al., 1999
p Rate of reversion to the quiescent state 0.017 Ribeiro et al., 2002
w Proportion of non-infectious virions 0.20 Piatak et al., 1993
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§
38 Table 2
S Estimates of the model parameters and their standard deviation. ALBI
§ ANRS 070 clinical trial.
(e}
<
3 Parameters ~ Estimated STD
S Value
= Q -3.16 0.15
A 2.62 0.12
117 -0.40 0.11
T 4.64 0.12
i -2.14 0.087
n 0.96 0.079
06 0.096 0.018
Oa 0.31 0.025
o 0.043 0.0059
Tpr, 0.25 0.028
ocv 0.42 0.012
0C D4 0.18 0.0050
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é Table 3
3 Absolute bias, 95% confidence interval coverage, mean of estimated standard
§ deviations (STD) and empirical STD (STD of parameter estimations) of the
I\E) estimators of model parameters for 100 simulated data sets of 100 patients.
8
&
g.
o Parameter True Value Absolute Coverage (%) STD of Mean of
Bias Estimates STD
a -3.16 0.0015 98 0.12 0.14
A 2.62 -0.00070 99 0.098 0.11
U« -0.40 0.0078 94 0.10 0.095
T 4.64 0.014 99 0.11 0.12
ur -2.14 0.0062 93 0.082 0.081
N 0.96 0.0029 94 0.11 0.12
B 0.096 0.0098 92 0.019 0.016
Ou 0.31 -0.0036 93 0.025 0.026
o 0.043 0.0016 90 0.0067 0.0057
O gy 0.25 0.0026 97 0.037 0.039
ocv 0.42 -0.0043 93 0.013 0.014
0CD4 0.18 -0.00014 92 0.0056 0.0053
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