L. Albera, A. Ferreol, P. Chevalier, and P. Comon, ICAR: a tool for blind source separation using fourth-order statistics only, IEEE Transactions on Signal Processing, vol.53, issue.10, pp.3633-3643, 2005.
DOI : 10.1109/TSP.2005.855089

URL : https://hal.archives-ouvertes.fr/hal-00743890

L. Albera, A. Ferreol, D. Cosandier-rimele, I. Merlet, and F. Wendling, Brain Source Localization Using a Fourth-Order Deflation Scheme, IEEE Transactions on Biomedical Engineering, vol.55, issue.2
DOI : 10.1109/TBME.2007.905408

URL : https://hal.archives-ouvertes.fr/inserm-00255994

S. Amari, Natural Gradient Works Efficiently in Learning, Neural Computation, vol.37, issue.2, pp.251-276, 1998.
DOI : 10.1103/PhysRevLett.76.2188

B. Ans, J. Herautl, and C. Jutten, Adaptative neural architectures : Detection of primitives, COGNITIVA'85, pp.593-597, 1985.

J. D. Bayliss and D. H. Ballard, Single trial p300 recognition in a virtual environnement, CIMA'99. Proceedings of Soft Computing in Biomedicine, 1999.

A. J. Bell and T. J. Sejnowski, An Information-Maximization Approach to Blind Separation and Blind Deconvolution, Neural Computation, vol.20, issue.1, pp.1129-1159, 1995.
DOI : 10.1109/78.301850

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Belouchrani, K. Abed-meraim, J. F. Cardoso, and E. Moulines, A blind source separation technique using second-order statistics, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.434-444, 1997.
DOI : 10.1109/78.554307

N. Birbaumer and L. G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis, The Journal of Physiology, vol.101, issue.3, pp.621-636, 2007.
DOI : 10.1113/jphysiol.2006.125633

B. Blankertz, K. R. Muller, G. Curio, T. M. Vaughan, G. Schalk et al., The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1044-1054, 2004.
DOI : 10.1109/TBME.2004.826692

J. F. Cardoso and A. Souloumiac, Blind beamforming for nongaussian signals IEE Proceedings-Part-F, special issue on application of Hight-Order Statistics, pp.362-370, 1993.

P. Chevalier, Optimal separation of independent narrow-band sources: Concept and performance, Signal Processing, vol.73, issue.1-2, pp.27-47, 1999.
DOI : 10.1016/S0165-1684(98)00183-2

P. Chevalier, L. Albera, P. Comon, and A. Ferreol, Comparative performance analysis of eight blind source separation methods on radiocommunications signals, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), 2004.
DOI : 10.1109/IJCNN.2004.1379913

P. Comon, Independent component analysis, A new concept?, Signal Processing, vol.36, issue.3, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

URL : https://hal.archives-ouvertes.fr/hal-00417283

P. Comon and J. L. Lacoume, Statistiques d'ordres supérieurs pour le traitement du signal Ecole Predoctorale de Physique, Les Houches, 30 aout ? 10 septembre, P. Flandrin et J. L, 1993.

N. Delfosse and P. Loubaton, Adaptive blind separation of independent sources: A deflation approach, Signal Processing, vol.45, issue.1, pp.59-83, 1995.
DOI : 10.1016/0165-1684(95)00042-C

D. Erdogmus, K. Ii, and J. C. Principe, Blind source separation using renyi's alpha-marginal entropies, Neurocomputing, Special Issue on Blind Source Separation and Independent Component Analysis, vol.49, issue.1, pp.25-38, 2002.
DOI : 10.1016/s0925-2312(02)00526-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Esposito, T. Scarabino, A. Hyv¨arinenhyv¨-hyv¨arinen, J. Himberg, E. Formisano et al., Independent component analysis of fMRI group studies by self-organizing clustering, NeuroImage, vol.25, issue.1, pp.193-205, 2005.
DOI : 10.1016/j.neuroimage.2004.10.042

L. A. Farwell and E. Donchin, Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials, Electroencephalography and Clinical Neurophysiology, vol.70, issue.6, pp.510-523, 1988.
DOI : 10.1016/0013-4694(88)90149-6

A. Ferreol, L. Albera, and P. Chevalier, Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM), IEEE Transactions on Signal Processing, vol.53, issue.5, pp.1640-1653, 2005.
DOI : 10.1109/TSP.2005.845431

L. Fety, Méthodes de traitement d'antenne adpatées aux radiocommunications, Ecole Nationale Supérieure des Télécommunications (ENST), 1988.

X. Gao, D. Xu, M. Cheng, and S. Gao, A BCI-based environmental controller for the motion-disabled, IEEE Transactions on Rehabilitation Engineering, vol.11, issue.2, pp.137-140, 2003.

S. Haykin, Blind Source Separation, Unsupervised Adaptive Filtering, vol.I, 2000.

N. J. Hill, T. N. Lal, K. Bierig, N. Birbaumer, and B. Scholkopf, Attentional modulation of auditory event-related potentials in a brain-computer interface, IEEE International Workshop on Biomedical Circuits and Systems, 2004., pp.17-19, 2004.
DOI : 10.1109/BIOCAS.2004.1454156

A. Hyvarinen, J. Karhunen, and P. Oja, Independent component analysis, ser. Wiley interscience, 2001.

C. J. James and C. W. Hesse, Independent component analysis for biomedical signals, Physiological Measurement, vol.26, issue.1, pp.15-39, 2005.
DOI : 10.1088/0967-3334/26/1/R02

C. J. James and S. Wang, Blind Source Separation in single-channel EEG analysis: An application to BCI, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006.
DOI : 10.1109/IEMBS.2006.260887

B. H. Jansen and V. G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biological Cybernetics, vol.580, issue.4, pp.357-366, 1995.
DOI : 10.1007/BF00199471

A. Kachenoura, L. Albera, and L. Senhadji, Blind source separation methods applied to synthesized polysomnographic recordings: a comparative study, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3868-3871, 2007.
DOI : 10.1109/IEMBS.2007.4353177

URL : https://hal.archives-ouvertes.fr/inserm-00186093

T. W. Lee, M. Girolami, and T. J. Sejnowski, Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources, Neural Computation, vol.28, issue.46, pp.417-441, 1999.
DOI : 10.1109/72.536322

S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, and G. E. Birch, A Comprehensive Survey of Brain Interface Technology Designs, Annals of Biomedical Engineering, vol.10, issue.3, pp.137-169, 2007.
DOI : 10.1007/s10439-006-9170-0

P. R. Mccullagh33-]-k, R. Uller, F. Vigario, A. Meinecke, and . Ziehe, Blind source separation techniques for decomposing event-related brain signal, Statistics and Applied Probability International Journal of Bifurcation and Chaos, vol.14, issue.2, pp.773-791, 1987.

E. Moreau, Criteria for complex sources separation, EU- SIPCO'96, Proceedings of European Signal Processing Conference, pp.931-934, 1996.

E. Niedermeyer, F. L. Dasilva, and E. , Basic Principles, Clinical Applications, and Related Fields (Fourth Edition), 1999.

L. Parra and P. Sajda, Blind source separation via generalized eigenvalue decomposition, Journal of Machine Learning Research, vol.4, pp.1261-1269, 2003.

D. T. Pham, Mutual information approach to blind separation of stationary sources, IEEE Transactions on Information Theory, vol.48, issue.7, pp.1935-1946, 2002.
DOI : 10.1109/TIT.2002.1013134

F. Poree, A. Kachenoura, H. Gauvrit, C. Morvan, G. Car-rault et al., Blind Source Separation for Ambulatory Sleep Recording, IEEE Transactions on Information Technology in Biomedicine, vol.10, issue.2, pp.293-301, 2006.
DOI : 10.1109/TITB.2005.859878

URL : https://hal.archives-ouvertes.fr/inserm-00131030

L. Qin, L. Ding, and B. He, Motor imagery classification by means of source analysis for brain???computer interface applications, Journal of Neural Engineering, vol.1, issue.3, pp.135-141, 2004.
DOI : 10.1088/1741-2560/1/3/002

L. Tong, V. Soon, R. Liu, and Y. Huang, AMUSE: a new blind identification algorithm, IEEE International Symposium on Circuits and Systems, 1990.
DOI : 10.1109/ISCAS.1990.111981

F. Vrins, D. Pham, and M. Verleysen, Is the General Form of Renyi???s Entropy a Contrast for Source Separation?, ICA 2007, 7th International Conference on Independent Component Analysis and Signal Separation, 2007.
DOI : 10.1007/978-3-540-74494-8_17

W. Wang and C. James, Enhancing evoked responses for BCI through advanced ICA techniques, MEDSIP 06, 3rd International Conference on Advances in Medical, Signal and Information Processing, pp.38-41, 2006.

W. Wang, Z. Zhang, X. Gao, and S. Gao, Lead selection for SSVEP-based brain-computer interface, EMBS 04, pp.4507-4510, 2004.

J. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurts-celler, and T. M. Vaughan, Brain-computer interfaces for communication and control, Electroencephalography and Clinical Neurophysiology, vol.113, issue.6, pp.767-791, 2002.

N. Xu, X. Gao, B. Hong, X. Miao, S. Gao et al., BCI Competition 2003???Data Set IIb: Enhancing P300 Wave Detection Using ICA-Based Subspace Projections for BCI Applications, IEEE Transactions on Biomedical Engineering, vol.51, issue.6, pp.1067-1072, 2004.
DOI : 10.1109/TBME.2004.826699

A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation, IEEE Transactions on Signal Processing, vol.50, issue.7, pp.1545-1553, 2002.
DOI : 10.1109/TSP.2002.1011195

T. Y. Young and T. W. Calvert, Classification, estimation and pattern recognition, 1974.

V. Zarzoso, P. A. Comon, K. R. Ziehe, and . Uller, How fast is FastICA TDSEP-an efficient algorithm for blind separation using time structure, EUSIPCO'96 Proceedings of European Signal Processing Conference ICANN'98, Proceedings of the 8th International Conference on Artificial Neural Networks, pp.675-680, 1998.