Y. Yang, A. Hentati, and H. Deng, The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains , is mutated in a form of recessive amyotrophic lateral sclerosis, Nature Genetics, vol.29, issue.2, pp.160-165, 2001.
DOI : 10.1038/ng1001-160

S. Hadano, C. Hand, and H. Osuga, A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2, Nature Genetics, vol.29, issue.2, pp.166-173, 2001.
DOI : 10.1038/ng1001-166

C. Pringle, A. Hudson, and D. Munoz, PRIMARY LATERAL SCLEROSIS: CLINICAL FEATURES, NEUROPATHOLOGY AND DIAGNOSTIC CRITERIA, Brain, vol.115, issue.2, pp.495-520, 1992.
DOI : 10.1093/brain/115.2.495

F. Norris, R. Shepherd, and E. Denys, Onset, natural history and outcome in idiopathic adult motor neuron disease, Journal of the Neurological Sciences, vol.118, issue.1, pp.48-55, 1993.
DOI : 10.1016/0022-510X(93)90245-T

L. Forestier, N. Maisonobe, T. Piquard, and A. , Does primary lateral sclerosis exist?: A study of 20 patients and a review of the literature, Brain, vol.124, issue.10, pp.1989-1999, 2001.
DOI : 10.1093/brain/124.10.1989

B. Hamida, M. Hentati, F. , B. Hamida, and C. , HEREDITARY MOTOR SYSTEM DISEASES (CHRONIC JUVENILE AMYOTROPHIC LATERAL SCLEROSIS), Brain, vol.113, issue.2, pp.347-363, 1990.
DOI : 10.1093/brain/113.2.347

A. Hentati, K. Bejaoui, and M. Pericak-vance, Linkage of recessive familial amyotrophic lateral sclerosis to chromosome 2q33???q35, Nature Genetics, vol.84, issue.3, pp.425-428, 1994.
DOI : 10.1006/geno.1993.1008

E. Eymard-pierre, G. Lesca, and S. Dollet, Infantile-Onset Ascending Hereditary Spastic Paralysis Is Associated with Mutations in the Alsin Gene, The American Journal of Human Genetics, vol.71, issue.3, pp.518-527, 2002.
DOI : 10.1086/342359

A. Otomo, S. Hadano, and T. Okada, ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics, Human Molecular Genetics, vol.12, issue.14, pp.1671-1687, 2003.
DOI : 10.1093/hmg/ddg184

K. Yamanaka, V. Velde, C. Eymard-pierre, and E. , Unstable mutants in the peripheral endosomal membrane component ALS2 cause early-onset motor neuron disease, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.16041-16046, 2003.
DOI : 10.1073/pnas.2635267100

A. Delprato, E. Merithew, and D. Lambright, Structure, Exchange Determinants, and Family-Wide Rab Specificity of the Tandem Helical Bundle and Vps9 Domains of Rabex-5, Cell, vol.118, issue.5, pp.607-617, 2004.
DOI : 10.1016/j.cell.2004.08.009

J. Cherfils and P. Chardin, GEFs: structural basis for their activation of small GTP-binding proteins, Trends in Biochemical Sciences, vol.24, issue.8, pp.306-311, 1999.
DOI : 10.1016/S0968-0004(99)01429-2

J. Topp, N. Gray, R. Gerard, and B. Horazdovsky, Alsin Is a Rab5 and Rac1 Guanine Nucleotide Exchange Factor, Journal of Biological Chemistry, vol.279, issue.23, pp.24612-24623, 2004.
DOI : 10.1074/jbc.M313504200

E. Tudor, M. Perkinton, and A. Schmidt, ALS2/Alsin Regulates Rac-PAK Signaling and Neurite Outgrowth, Journal of Biological Chemistry, vol.280, issue.41, pp.34735-34740, 2005.
DOI : 10.1074/jbc.M506216200

K. Kanekura, Y. Hashimoto, and Y. Kita, Gene, Antagonizes Cu/Zn-superoxide Dismutase (SOD1) Mutant-induced Motoneuronal Cell Death, Journal of Biological Chemistry, vol.280, issue.6, pp.4532-4543, 2005.
DOI : 10.1074/jbc.M410508200

K. Kanekura, Y. Hashimoto, and T. Niikura, Alsin, the Product of ALS2 Gene, Suppresses SOD1 Mutant Neurotoxicity through RhoGEF Domain by Interacting with SOD1 Mutants, Journal of Biological Chemistry, vol.279, issue.18, pp.19247-19256, 2004.
DOI : 10.1074/jbc.M313236200

S. Millecamps, B. Gentil, and F. Gros-louis, Alsin is partially associated with centrosome in human cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1745, issue.1, pp.84-100, 2005.
DOI : 10.1016/j.bbamcr.2004.12.008

J. Kress, P. Kühnlein, and P. Winter, Novel mutation in theALS2 gene in juvenile amyotrophic lateral sclerosis, Annals of Neurology, vol.11, issue.5, pp.800-803, 2005.
DOI : 10.1002/ana.20665

G. Lesca, E. Eymard-pierre, and F. Santorelli, Infantile ascending hereditary spastic paralysis (IAHSP): Clinical features in 11 families, Neurology, vol.60, issue.4, pp.674-682, 2003.
DOI : 10.1212/01.WNL.0000048207.28790.25

F. Gros-louis, I. Meijer, and C. Hand, gene mutation causes hereditary spastic paraplegia in a Pakistani kindred, Annals of Neurology, vol.310, issue.1, pp.144-145, 2003.
DOI : 10.1002/ana.10422

R. Devon, J. Helm, and G. Rouleau, The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings, Clinical Genetics, vol.72, issue.3, pp.210-215, 2003.
DOI : 10.1034/j.1399-0004.2003.00138.x

R. Devon, C. Schwab, and J. Topp, Cross-species characterization of the ALS2 gene and analysis of its pattern of expression in development and adulthood, Neurobiology of Disease, vol.18, issue.2, pp.243-257, 2005.
DOI : 10.1016/j.nbd.2004.10.002

H. Cai, X. Lin, and C. Xie, Loss of ALS2 Function Is Insufficient to Trigger Motor Neuron Degeneration in Knock-Out Mice But Predisposes Neurons to Oxidative Stress, Journal of Neuroscience, vol.25, issue.33, pp.7567-7574, 2005.
DOI : 10.1523/JNEUROSCI.1645-05.2005

S. Hadano, S. Benn, and S. Kakuta, Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking, Human Molecular Genetics, vol.15, issue.2, pp.233-250, 2006.
DOI : 10.1093/hmg/ddi440

A. Ridley, H. Paterson, and C. Johnston, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell, vol.70, issue.3, pp.401-410, 1992.
DOI : 10.1016/0092-8674(92)90164-8

G. Li and P. Stahl, Structure-function relationship of the small GTPase rab5, J Biol Chem, vol.268, pp.24475-24480, 1993.

F. Rathjen and M. Schachner, Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion, EMBO J, vol.3, pp.1-10, 1984.

A. Srinivasan, K. Roth, and R. Sayers, In situ immunodetection of activated caspase-3 in apoptotic neurons in the developing nervous system, Cell Death and Differentiation, vol.5, issue.12, pp.1004-1016, 1998.
DOI : 10.1038/sj.cdd.4400449

C. Henderson, E. Bloch-gallego, and W. Camu, Purification and culture of embryonic spinal motoneurons Nerve cell culture: a practical approach, pp.69-81, 1995.

T. Bréjot, S. Blanchard, and S. Hocquemiller, Forced expression of the motor neuron determinant HB9 in neural stem cells affects neurogenesis, Experimental Neurology, vol.198, issue.1, pp.167-182, 2006.
DOI : 10.1016/j.expneurol.2005.11.026

C. Raoul, A. Estevez, and H. Nishimune, Motoneuron Death Triggered by a Specific Pathway Downstream of Fas, Neuron, vol.35, issue.6, pp.1067-1083, 2002.
DOI : 10.1016/S0896-6273(02)00905-4

P. Steiner, J. Sarria, and L. Glauser, Modulation of receptor cycling by neuron-enriched endosomal protein of 21 kD, The Journal of Cell Biology, vol.16, issue.7, pp.1197-1209, 2002.
DOI : 10.1038/80614

D. Dykxhoorn, C. Novina, and P. Sharp, Killing the messenger: short rnas that silence gene expression, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.457-467, 2003.
DOI : 10.1038/nrm1129

S. Hadano, A. Otomo, and K. Suzuki-utsunomiya, ALS2CL, the novel protein highly homologous to the carboxy-terminal half of ALS2, binds to Rab5 and modulates endosome dynamics, FEBS Letters, vol.495, issue.1-3, pp.64-70, 2004.
DOI : 10.1016/j.febslet.2004.07.092

J. Wilson, M. De-hoop, and N. Zorzi, EEA1, a Tethering Protein of the Early Sorting Endosome, Shows a Polarized Distribution in Hippocampal Neurons, Epithelial Cells, and Fibroblasts, Molecular Biology of the Cell, vol.11, issue.8, pp.2657-2671, 2000.
DOI : 10.1091/mbc.11.8.2657

H. Kamiguchi, K. Long, and M. Pendergast, The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway, J Neurosci, vol.18, pp.5311-5321, 1998.

D. Sheff, E. Daro, M. Hull, and I. Mellman, The Receptor Recycling Pathway Contains Two Distinct Populations of Early Endosomes with Different Sorting Functions, The Journal of Cell Biology, vol.257, issue.1, pp.123-139, 1999.
DOI : 10.1083/jcb.140.5.1039

C. Raoul, C. Henderson, and B. Pettmann, Programmed Cell Death of Embryonic Motoneurons Triggered through the FAS Death Receptor, The Journal of Cell Biology, vol.18, issue.5, pp.1049-1062, 1999.
DOI : 10.1038/356314a0

P. Ince, J. Lowe, and P. Shaw, Amyotrophic lateral sclerosis: current issues in classification, pathogenesis and molecular pathology, Neuropathology and Applied Neurobiology, vol.20, issue.2, pp.104-117, 1998.
DOI : 10.1074/jbc.272.14.8861

C. Hanemann and A. Ludolph, Hereditary motor neuropathies and motor neuron diseases: which is which, Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol.78, issue.3, pp.186-189, 2002.
DOI : 10.1126/science.8209258

D. Cleveland and J. Rothstein, From charcot to lou gehrig: deciphering selective motor neuron death in als, Nature Reviews Neuroscience, vol.26, issue.11, pp.806-819, 2001.
DOI : 10.1038/35097565

I. Puls, C. Jonnakuty, and B. Lamonte, Mutant dynactin in motor neuron disease, Nature Genetics, vol.33, issue.4, pp.455-456, 2003.
DOI : 10.1038/ng1123

Y. Chen, C. Bennett, and H. Huynh, DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4), The American Journal of Human Genetics, vol.74, issue.6, pp.1128-1135, 2004.
DOI : 10.1086/421054

A. Nishimura, M. Mitne-neto, and H. Silva, A Mutation in the Vesicle-Trafficking Protein VAPB Causes Late-Onset Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis, The American Journal of Human Genetics, vol.75, issue.5, pp.822-831, 2004.
DOI : 10.1086/425287

K. Rossman, C. Der, and J. Sondek, GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors, Nature Reviews Molecular Cell Biology, vol.374, issue.2, pp.167-180, 2005.
DOI : 10.1038/nrm1587

L. Luo, Rho GTPases in neuronal morphogenesis, Nature Reviews Neuroscience, vol.1, issue.3, pp.173-180, 2000.
DOI : 10.1038/35044547

H. Vikis, W. Li, Z. He, and K. Guan, The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner, Proceedings of the National Academy of Sciences, vol.97, issue.23, pp.12457-12462, 2000.
DOI : 10.1073/pnas.220421797

Z. Gitai, T. Yu, and E. Lundquist, The Netrin Receptor UNC-40/DCC Stimulates Axon Attraction and Outgrowth through Enabled and, in Parallel, Rac and UNC-115/AbLIM, Neuron, vol.37, issue.1, pp.53-65, 2003.
DOI : 10.1016/S0896-6273(02)01149-2

M. Nikolic, The role of Rho GTPases and associated kinases in regulating neurite outgrowth, The International Journal of Biochemistry & Cell Biology, vol.34, issue.7, pp.731-745, 2002.
DOI : 10.1016/S1357-2725(01)00167-4

G. Meyer and E. Feldman, Signaling mechanisms that regulate actin-based motility processes in the nervous system, Journal of Neurochemistry, vol.153, issue.3, pp.490-503, 2002.
DOI : 10.1046/j.1471-4159.2002.01185.x

S. Le, F. Loucks, and H. Udo, Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons, Journal of Neurochemistry, vol.274, issue.4, pp.1025-1039, 2005.
DOI : 10.1111/j.1471-4159.2005.03252.x

J. Gorvel, P. Chavrier, M. Zerial, and J. Gruenberg, rab5 controls early endosome fusion in vitro, Cell, vol.64, issue.5, pp.915-925, 1991.
DOI : 10.1016/0092-8674(91)90316-Q

C. Bucci, R. Parton, and I. Mather, The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway, Cell, vol.70, issue.5, pp.715-728, 1992.
DOI : 10.1016/0092-8674(92)90306-W

G. Tall, M. Barbieri, P. Stahl, and B. Horazdovsky, Ras-Activated Endocytosis Is Mediated by the Rab5 Guanine Nucleotide Exchange Activity of RIN1, Developmental Cell, vol.1, issue.1, pp.73-82, 2001.
DOI : 10.1016/S1534-5807(01)00008-9

B. Sönnichsen, D. Renzis, S. Nielsen, and E. , Distinct Membrane Domains on Endosomes in the Recycling Pathway Visualized by Multicolor Imaging of Rab4, Rab5, and Rab11, The Journal of Cell Biology, vol.112, issue.4, pp.901-914, 2000.
DOI : 10.1083/jcb.140.5.1039

J. Rink, E. Ghigo, Y. Kalaidzidis, and M. Zerial, Rab Conversion as a Mechanism of Progression from Early to Late Endosomes, Cell, vol.122, issue.5, pp.735-749, 2005.
DOI : 10.1016/j.cell.2005.06.043

J. Bai, R. Ramos, and J. Ackman, RNAi reveals doublecortin is required for radial migration in rat neocortex, Nature Neuroscience, vol.6, issue.12, pp.1277-1283, 2003.
DOI : 10.1038/nn1153

J. Corbo, T. Deuel, and J. Long, Doublecortin is required in mice for lamination of the hippocampus but not the neocortex, J Neurosci, vol.22, pp.7548-7557, 2002.

L. Bruijn, T. Miller, and D. Cleveland, UNRAVELING THE MECHANISMS INVOLVED IN MOTOR NEURON DEGENERATION IN ALS, Annual Review of Neuroscience, vol.27, issue.1, pp.723-749, 2004.
DOI : 10.1146/annurev.neuro.27.070203.144244

A. Clement, M. Nguyen, and E. Roberts, Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice, Science, vol.302, issue.5642, pp.113-117, 2003.
DOI : 10.1126/science.1086071