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Abstract 

In this paper, a new inter-iteration filtering scheme based diffusion MAP estimate for PET image 

reconstruction is proposed. This is achieved by gaining the insights into the classical MAP iteration (e.g. 

the OSL algorithm) and the several well-established approximations to the diffusion process. We show that 

such a new technique in turn allows additional insight and sufficient flexibility to further investigate some 

nonlinear filters based reconstruction algorithms. In particular, upon unraveling the limitations but 

maintaining the advantages of diffusion regularized method, we suggest the bilateral filter as a nice 

application in which image smoothing while edge preserving can be readily obtained by the nice 

combination of the range and domain filters. The feasibility and efficiency of the proposed method are 

verified in the substantiating experiments conducted on both the computer simulated and real clinical data.  

 

Keywords: image reconstruction, inter-iteration, filtering, MAP, OSL, diffusion, bilateral, range filter, 

domain filter. 
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1. Introduction 

Positron emission tomography (PET) is one of the most important imaging tools in modern diagnosis; it 

provides valuable information on the biochemical and biological activity inside a living subject in a 

non-invasive way. Reconstruction of PET scan images is a complex problem; many algorithms such as 

analytic and iterative algorithms have been developed in the past decades to solve this problem. Among 

iterative algorithms, the statistical reconstruction has become increasingly popular due to its ability to 

model the noise and the imaging physics and to impose the positivity constraints on the reconstruction. 

 

As it is well known, PET is an ill-posed problem; that is, small variations in the data produce large 

variations in the solution. When using an iterative algorithm, the ML problem in particular, as the 

likelihood increases, the image starts deteriorating; the algorithm enforces consistency with data, and, 

because of the size of the problem, more and more high frequencies related to noise show up. So, iterations 

should be stopped before this happens, by using a suitable stopping criterion [1]. A better approach to 

overcome the ill-posedness effects is to consider prior information through regularization terms allowing 

more sophisticated and accurate models.  

 

Bayesian methods known as the Maximum a Posteriori (MAP) estimate for PET image reconstruction and 

restoration have become increasingly popular because they allow accurate modeling of both data collection 

and image behavior. The MAP algorithm can remove the divergence in quantitative accuracy at higher 

iteration numbers, which is often seen in ML due to noise. The result is often a smoother image in the same 
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number of iterations. This attributes largely to the introduction of image priori that maintains the 

reconstruction without being degenerated by the noise. As for the design of priori, the Gibbs distribution is 

commonly used due greatly to its simplicity and well-established rationale. In the past decades, a variety of 

prior distributions have been proposed, typically [2], [3], [4], most of which are distinguished by the choice 

of energy function in the modeling of Gibbs priori. Recently, the diffusion based priori seems especially 

attractive in case of tomography reconstruction [5]-[8]. It is mainly because the diffusion techniques 

provide a promising way of image denoising while edge preservation. One may readily construct the 

diffusion priori by replacing the energy function in the canonical Gibbs distribution with proper gradient 

based energy functional. Such an insight has led to the inherent deep connections between the MAP 

estimate and the variational partial differential equations (PDE) based anisotropic diffusion progress [9]. As 

for the anisotropic diffusion, it has played an important role in signal and image analysis since Perona and 

Malik's landmark work [10] in which they firstly aimed at persevering sharp features such as edges in 

images based on nonlinear evolution equation. Their technique may be more simply interpreted as a 

nonlinear filter whose selective smoothing is based upon the computed local gradient. This promising 

approach has triggered a tremendous research activity in computer vision and applied mathematics and has 

been proven to be a powerful tool for restoration and reconstruction of high-quality images.  

 

In this paper, our plan is hence to detail the utilities of nonlinear filtering and help us provide an alternative 

view of the problem of PET image reconstruction. This, in turn, will be instrumental in our development of 

an alternative interpretation of existing reconstruction methods, e.g., the 'one-step-late' (OSL) algorithm [3], 

and in using the gained insight to propose the inter-iteration filtering (IIF) scheme to some of the well 
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known limitations. More specifically, we view the reconstruction as a solution to a controlled iteratively 

prediction/correction system. This ultimately leads to an inter-iteration filtering with two typical filters, the 

reconstruction filter and the nonlinear filter, well adapted to preserving salient features of images (such as 

edges) while smoothing away the noise. In doing so, we furthermore introduce the bilateral filter [11] as a 

nice candidate for the nonlinear filter which enables us to distinguishes noise from signal based on not only 

the amplitude differences of windowed pixels but also on the spatial size of a detail. 

 

The rest of paper is organized as follows: In section 2, we first briefly outline the problem of PET 

reconstruction and then introduce the anisotropic diffusion which connects the diffusion based priori and 

gives us insights to derive accordingly the new reconstruction algorithm based on the IIF scheme; The 

corresponding evaluations through both the computer simulated and the real clinical data based examples is 

provided in Section 3. Finally, Section 4 gives out some concluding remarks. 

 

2. Methodology 

2.1 PET Image Reconstruction 

In PET, the isotope used emits positrons which annihilate with nearby electrons generating two photons 

traveling away from each other in opposite direction. The emission of positrons is modeled as a spatial, 

inhomogeneous Poisson process with unknown intensity, the mean of which is determined by the 

concentration of the isotope that we wish to estimate. For the convenience of illustration, we assume the 
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image to be reconstructed is subdivided into JJ × pixels and also assume that the activity 

concentration within each pixel is uniform, denoted by . The data consists of photon coincidence 

counts collected by 

j jf

I detector pairs, ,iY Ii ,...2,1= .  is a sample from a Poisson distribution whose 

expectation value is 

iY
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][)( Af , where iY  is the Poisson random variable corresponding 

to and the element of the projection matrix , is the probability that a positron 

emitted from pixel results in a coincidence at the th LOR,  is the image vector, i.e., . 

The conditional probability of obtaining the measurement vector  given the image vector  (i.e., the 

likelihood function) is 
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The ML method which estimates that maximizes  subject to nonnegative constraints on , or, 

equivalently, finds the which maximizes 
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With the help of EM algorithm, Shepp and Vardi proposed the following image update formula for the ML 

solution (ML-EM algorithm) [12]: 
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The ML solution is dominated by noise artifacts, and iterative estimates exhibit increasing noise artifacts 

along iterations. Therefore regularization techniques are usually needed to produce a reasonable 

reconstruction. The Bayesian approach as well as the MAP estimate represents a more complete and elegant 
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way to stabilize the ML problem by using prior information contained in a regularization term. That is 

instead of maximizing the likelihood (1),  is maximized, i.e., via the Bayesian formula, the new 

model becomes 

)|Pr( Yf

)Pr()|Pr(
)Pr(

)Pr()|Pr()|Pr(max
0

ffY
Y

ffYYf
f

∝=
≥

 (4)

where and are the probabilities of and  respectively. A common Bayesian priori is the 

Gibbs distribution of the form: 

)(fP )(YP f Y

))(exp()Pr( ff Ψ−∝ β , 0>β  (5)

where  is the so-called energy function. By substituting (5) and (1) into (4) and then taking 

logarithm, we obtain the MAP estimate: 
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One EM-type approach to construct MAP reconstruction  has been recommended by Green [3], which is 

known as the OSL algorithm. In this algorithm, the influence of prior term is only performed at the current 

estimate , and thus results in the simple updating equation [3]: 
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Apparently such an influence is imposed by the meaning of the gradient of the energy function  

evaluated at each iteration k . Due to this "one step late" property of this algorithm, a fully iteration can be 

interestingly seen as an error prediction/correction technique. Calculation of the priori influence, i.e., the 

gradient of  corresponds to the error prediction, and their use in (7) to reestimate  is correction. 

In the proceeding the similar technique will be given new interpretations in our proposed algorithm. 

)(fU

)(fΨ jf
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2.2 Reconstruction Using Inter-Iteration Filtering Scheme 

A. Anisotropic Diffusion 

In this section, we will discuss the usage of the nonlinear filter for the problem of PET image reconstruction. 

It is necessary to review some basic relations between the anisotropic diffusion process and the underlying 

nonlinear filtering problem. Let us first consider the following energy functional defined on the spaces of 

smooth images, that is, images for which f∇  is finite in Ω , as in the following respect to image function 

: f

∫Ω Ω∇=Ψ dff ||)(||)( ρ  (8)

where 0||)(|| ≥∇fρ  is an increasing function of |||| f∇ . One way we can minimize the above expression 

is by means of gradient descent by using the calculus of variations theory which leads to the parabolic PDE: 
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with the initial and boundary conditions: 
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where  denotes the divergence operator and )(⋅div N
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and substituting it into (9) we obtain 
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which amounts to Perona and Malik's anisotropic diffusion equation [10]. Function  is the so-called )(⋅g
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edge-stopping function that is a nonnegative monotonically decreasing function with .  The 

diffusion process will mainly take place in the interior of regions, and it will not affect the region 

boundaries where the magnitude of gradient of  is large. Qualitatively, the effect of anisotropic diffusion 

is to smooth the original image while preserving brightness discontinuities. This is well controlled by the 

choice of  that greatly affects the extent to which discontinuities are preserved. 

0.1)0( =g

f

)(⋅g

 

Equation (12) can be discretized as follows [13]: 
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k
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k
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where is the discretely sampled image, denotes the pixel position in a discrete 2D grid, and 

denotes discrete time steps (iterations). The constant is a scalar that determines the rate of 

diffusion, 

jf j

k +ℜ∈λ

η  represents the spatial neighborhood of pixel , and j || jη is the number of neighbors (usually 

four). The image gradient is linearly approximated in a particular direction as 

k
j

k
pjp fff −=∇ , ,  jp η∈ (14)

 

Barash and Comaniciu recently noted that the nonlinear diffusion is common with the generalized adaptive 

smoothing [14], [15]: 
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where the window  covers a local filter support of sizejS )12()12( +×+ nn , ",2,1=n , centered at the 

pixel  and 's acting as the smoothing kernel correspond to different neighbor combinations with 

respect to the center pixel of interest. Typically one can choose  as 

j pw

pw )( , jpp fgw ∇≡  which results in 
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the fundamental link between the anisotropic diffusion and the edge-preserving smooth filters. In the next 

subsection, we shall give out more details on the design of filter . It is noted that in practice,  need 

not be taken too large (usually ), otherwise the generalized adaptive smoothing becomes an inaccurate 

representation of the extended diffusion equation which causes the image being oversmoothed [15].  

pw n

3≤n

 

B. Inter-Iteration Filtering Scheme 

The diffusion based MAP reconstruction is to consider the continuous prior probability density as follows 

[9]: 

}||)(||exp{)Pr( ∫Ω Ω∇−∝ dff ρβ  (16)

To approach the corresponding estimate based on the above priori, we can use the insights gaining from the 

OSL algorithm that is equivalent to solve the gradient of )(fΨ , or more specifically,  

j
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where jF denotes the th sample of continuous function j F . One may reach (17) by properly 

discretizing  as well as the divergence operator in (2), which usually involves the finite difference to 

the first and second order partial derivatives and possibly becomes complicated with the different choices 

of 

'Ψ

)(⋅ρ . However, by noticing the relations between the anisotropic diffusion (13) and the generalized 

adaptive smoothing (15), we may instead approximate (17) by using the following slightly abusive form 
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Clearly such an approximation is easier to manipulate since it depends only on the choice of smoothing 
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kernel . Secondly, perhaps the most importantly, because the first term on the right-hand side of (18) acts 

like the nonlinear filtering carried on a local structure of the current estimate , it thus can be treated 

independently. Therefore, it is worthy to note that (18) does indicate how the reconstruction can be 

reinterpreted as an inter-iteration filtering scheme.  

pw

jS kf

 

More precisely, by substituting (18) into the OSL formula (7), we can present the new algorithm as follows: 
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where represents the edge-preserving smooth filter at iteration  and for each we 

typically have 

kH k Jj ,,1"=
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The above iteration scheme furthermore can be summarized in Fig.1. 

 

FIGURE 1 

 

In Fig.1, we describe the reconstruction in the notation of filtering which is also in the spirits of OSL's 

prediction/correction technique. Given current estimate , the is obtained by inputting  to the 

nonlinear filter . The output is then subtracted by to produce the residue error which along with 

the and observation  feeds back to the reconstruction filter to yield the new estimate .  

kf kf~ kf

kH kf ke

kf Y 1+kf
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C. Bilateral Filter 

Comparing most other diffusion based MAP algorithms, e.g., [6]-[8], the proposed algorithm treats the 

diffusion based a priori more implicitly so that we can focus only on the design of smooth filter as 

well as the weights 's. As mentioned previously,  can be taken as  and then lead to the 

common diffusion filter. However such a filter usually does not consider the pixel position information but 

emphasize only on their differences to the center pixel of the specific local structure . Thus the effects of 

spatial resolution are often ignored and can not be well maintained for the case of practical uses.  

kH

pw pw )( , jpfg ∇

jS

 

One way out of this problem is to model the spatial resolution together with the mentioned diffusion filter 

which results in the bilateral filter. The bilateral filtering was first introduced in [11] as the nonlinear filter 

which combines domain and range filtering. It has proven to be useful in the accomplishment of compute 

vision tasks [16], [17] and its nice properties have been well established in several literatures, such as [11], 

[18], [19], [20]. Given an input image , using a continuous representation notation as in [11], the output 

image 

f

f
~

 is obtained by 

∫ ∫
∫ ∫

∞+

∞−

∞+

∞−

+∞

∞−

+∞

∞−=
ξxξxξ

ξxξxξx
x

dffsc

dffscf
f

))(),((),(

))(),((),()(
)(

~
 (21)

where , ),( yx=x ),( 21 ξξ=ξ are space variables. Clearly the convolution kernel is the product of the 

functions  andc s , which represent ‘closeness’ (in the domain) and ‘similarity’ (in the range), respectively. 

In case of discrete image, each weight within the specific window  then can be determined by jS

),(),( jpp ffsjpcw = . (22)
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More specifically,  is usually radially symmetric, taking the Gaussian like function for example [11], ),( ⋅⋅c

⎟
⎟
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−= 2

2

2
),(exp),(

D

jpdjpc
σ

 (23)

where 

jpjpdjpd −=−= )(),(  (24)

is the Euclidean distance between pixel and , p j Dσ denotes the geometric spread controlling the shape 

of Gaussian function. In such a case, we found that the function ),( ⋅⋅c  acts more like the point spread 

function (PSF) of a typical imaging system. Therefore, Dσ  can be similarly characterized with the system 

spatial resolution by meaning of full-width-at-half-maximum (FWHM).  

 

The similarity function  employed here is defined by  ),( ⋅⋅s

⎟
⎟
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⎛ −
−= 2

||
exp),(

R

jp
jp

ff
ffs

σ
 (25)

where Rσ  is the tuning parameter. The similarity function in (25) acts like a Laplacian distribution and is 

bounded above by unity. Consequently, the function ),( ⋅⋅s  maintaining the properties of the edge-stopping 

function (i.e., ) progressively penalizes intensity differences, and thus favors 

locally smooth images, but by controlling the behavior for large intensity differences through 

)(⋅g )(),( , jpjp fgffs ∇≡

Rσ , true 

discontinuities in the image are not overpenalized. We have found in experiments, with an appropriate 

choice of Rσ , It can yield reconstructions which are locally smooth but do not appear to oversmooth across 

intensity boundaries. 

 

Towards the end, we refer to the proposed algorithm as IIF-MAP and outline it as follows: 
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1) Setup the initial guess ( , e.g., FBP reconstruction); Select constant values for 

parameter

0f 00 ≥f

β and Rσ ; Determine the size of window  thenn Dσ . For ",2,1,0=k , we start with the 

following steps: 

2) Construct the bilateral filter using (22)-(25) combining with the current estimate ; kH kf

3) Filter using (20) to obtain the kf kf~  and then compute the error prediction kkk ffe −=
~ ; 

4) Reestimate the new reconstruction  using (19); 1+kf

5) Check whether iteration reaches some specific stopping conditions. If no, return to step 2) and repeat 

again; otherwise, quit the loop of iteration and output the reconstruction. 

 

3. Experimental Results and Discussions 

This section presents reconstructions of simulated and clinical data using the ML-EM algorithm and the 

IIF-MAP algorithm using the nonlinear bilateral filter introduced in section 2. PET emission data was 

simulated using the computer generated brain phantom shown in figure 2(a). The phantom is of size 

pixels. The grey levels in figure 2(a) reflect the relative activities in different regions of the 

phantom. Three types of matter: grey matter, white matter and CSF were used, which were then assigned to 

be 5.64, 2.46, and 1.0 respectively [21]. The sinogram was generated by forward projection of the brain 

phantom image. Simulated Poisson noise equivalent of one million counts was added to the projections. 

Complicating factors such as attenuation and scatter were not considered. The image was projected in 192 

equiangular directions onto an array of 192 equispaced coincidence detector pairs per angle, resulting in a 

sinogram of size 192×192.  

128128×
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3.1. ML-EM Reconstruction of simulated data 

The brain phantom sinogram was reconstructed using the ML–EM algorithm given by equation (3). The 

initial image  was taken to be uniform with a total of approximately one million counts. One hundred 

iterations of the ML–EM algorithm were performed. The reconstructions of the brain phantom at iterations 

10, 20, 50, and 100 are shown in figure 2(b)-(e). The gradual increase in noise with the number of iterations 

is apparent in these images. The deterioration in image quality can be illustrated by computing the 

normalized mean square error (MSE) between the simulated noise-free activity distribution and the image 

estimate as a function of the iteration number . The MSE is given by 

0f

k

%100)( 2

2

×
−

=
true

truek

kMSE
f

ff
 (26)

where  denotes the ground-truth phantom. The MSE for the ML-EM reconstruction of the brain 

phantom is shown in figure 4. For this particular study, the minimum MSE was reached at iteration number 

34, after which the MSE began to increase. As expected, the log-likelihood function (2) kept increasing 

with the iteration number while the image quality deteriorated [1]. 

truef

 

FIGURE 2 
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3.2 IIF-MAP Reconstruction of simulated data 

IIF-MAP reconstructions of simulated data are presented in this section and the results are compared with 

ML-EM and other MAP reconstruction. As in the case of ML-EM, the initial image estimate  was also 

chosen to be uniform with a total of approximately one million counts. Another MAP used here is with the 

priori of total variational (TV) in which the function 

0f

(|| ||)fρ ∇  is defined by: 

(|| ||) || ||f fρ ∇ = ∇ . 

It is known (e.g., [22]) that TV based diffusion process relates closely to the so-called mean curvature flow 

that has proven to be powerful for image smoothing while edge preserving. In this paper, the resulting MAP 

reconstruction method is named as TV-MAP. According to (9), the gradient is 

'
|| ||

fdiv
f

⎡ ⎤∇
Ψ = ⎢ ⎥∇⎣ ⎦

. 

With some knowledge of algebra, the right-hand side of above formula can be written out analytically [22]: 

( )
2 2

3
2 2

2
|| ||

xx y x y xy yy x

x y

f f f f f f ffdiv
f f f

− +⎡ ⎤∇
≡⎢ ⎥∇⎣ ⎦ +

 (27)

where xf and yf  are the first-order partial derivatives of function f  with respect to the coordinate x  

and ; y xxf , yyf , xyf  are the related second-order partial derivatives. In order to well approximate each 

partial derivative, the scheme of finite difference can be used. For the convenience of illustration, we 

introduce ( , )x y ( 1,2, ,x J= …  and 1, 2, ,y J= … ) to index pixel location of any two-dimensional 

function, and also suppose the difference step is unity. With this help, the derivative approximation can be 

yielded by: 

1) The first-order derivatives: 

( , ) [ ( 1, ) ( 1, )] / 2xf x y f x y f x y≅ + − − , ( , ) [ ( , 1) ( , 1)] / 2yf x y f x y f x y≅ + − − ; 
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2) The second-order derivatives: 

( 1, ) 2 ( , ) ( 1, )xxf f x y f x y f x y≅ + − + − , ( , 1) 2 ( , ) ( , 1)yyf f x y f x y f x y≅ + − + − , 

[ ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1)] / 4xyf f x y f x y f x y f x y≅ + + + − − − + − − − + . 

Here we can use either the zero-padding or boundary reduplication to avoid the error of boundary violation. 

By using the coordinate transform, i.e., 
( 1)

'( , ) '
x M y

x y
− +

Ψ ≡ Ψ , we can obtain the required vector version 

of gradient. Also it is worthy noting that, to stabilize the gradient calculation, 2 2
x yf f+  in the 

denominator of (27) has been replaced with 2 2
x yf f ε+ +  (where 510ε −= ) in order to avoid the divide 

by zero [23]. 

 

In the IIF-MAP algorithm, we apply the bilateral filter to penalize the noise artefact. In the bilateral filter, 

the closeness function as well as the domain filter is determined by (23) whose shape is mainly controlled 

by the variance of Gaussian function Dσ .  In this paper, we choose Dσ  as the function of window size 

 and the tuning parametern γ , 

γ
σ

ln
2 2n

D −= , 0.10 << γ . (28)

Here γ is the ratio to the peak of Gaussian window function. Apparently, the smaller the γ is, the larger 

the Dσ  as well as the smaller the influences that pixels far from the center to the center pixel of interest 

will be. In this paper we select %50=γ  so that the γ has the same effect as the FWHM of the system. 

Therefore, the resultant Dσ 's for windows with size of 33× , 55×  and 77×  are 1.6986, 3.3973, 5.0959 

respectively.  
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Firstly we investigate the influence of regularization parameter β  in our IIF-MAP. Reconstruction for three 

different values of β  with 2.0=Rσ  and 1=n  is shown in figure 3.  

 

FIGURE 3 

 

As is evidenced in this figure, IIF-MAP reconstruction with the bilateral filter greatly alleviates the noise 

artifacts in the reconstructed image. It can be seen that β  controls the degree of smoothness of the 

IIF-MAP reconstruction. A striking improvement can be found out that although the reconstructed images 

tend to be smooth, edges can be well preserved (see figure 3(b)) by choosing appropriate value β . This is 

mainly due to the used bilateral filter which smoothes the noise while persevere salient features as well. As 

the additional evidence, figure 4 shows the related line comparisons between different reconstructions 

where the edge-preserving smoothing property of IIF-MAP can be readily found out.  

 

FIGURE 4 

 

FIGURE 5 

 

Figure 5 compares the MSE between the ML-EM and the IIF-MAP reconstructions as a function of 

iteration number. As noted early, the MSE in ML–EM reconstruction reaches its minimum at iteration 

number 34 and then starts to increase with increasing of iteration number. However, the MSE in the 
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IIF-MAP algorithm continues to decrease. It also indicates from the IIF-MAP reconstructions shown in 

figure 3 that the smoothing achieved by the IIF-MAP algorithm with inter-iteration filtering results in a loss 

of resolution in the reconstructed images. This effect has been also observed in many other MAP image 

reconstructions (e.g., [2], [3]). In fact, the IIF-MAP method can easily be reformulated as a Gaussian like 

MAP estimate by choosing the priori probability density as follows: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−∝ ∑

=

J

j
jjf

1

2)(exp)Pr( μβf  (29)

where jμ  denote the mean Gaussian variables. Clearly we can set 

j
k

j ][ fH=μ  (30)

and then readily obtain the same expression as (19). 

 

The performance of IIF-MAP was further addressed by comparing it with TV-MAP. For each MAP 

algorithm, we started with the same uniform image and then perform 100 iterations. To obtain the relatively 

optimal value of β  for each MAP, a greedy strategy was used, which produced 100 different β  values 

uniformly spaced in the specific interval [0.001, 0.50]. The minimum of MSE for each β  was saved 

throughout the iteration progress, which is finally plotted as the function β  in figure 6(a).  

 

FIGURE 6 

 

It is clear to see that the optimal β  varies with the used MAP method. In this particular experiment, 

0.006β =   yields the global MSE minimum (MSE = 6.7716) in TV-MAP while 0.102β =  seems 
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optimal for IIF-MAP (MSE = 6.1854). Figure 6(b) shows the reconstructed images that correspond to the 

above two cases, i.e., 0.006β =  for TV-MAP and 0.102β =  for IIF-MAP. As we can see, both of 

images are quite similar at least from the visual standard of view, except for the TV-MAP reconstruction 

which displays several “black dots” artefact that, we believe, are caused by the numerical instability during 

the calculation of the required gradient operation. Actually, one may alleviate this problem by increasing 

the value of ε . However we note here too large ε  does change the property of TV that may result in a 

totally different method. As additional evidence, figure 6(c) shows the related line comparisons between 

different reconstructions of TV-MAP and IIF-MAP in which the advantage of IIF-MAP can be viewed. 

 

For each MAP algorithm, we also recorded the execute time calculated by averaging those CPU time costs 

over 100 iteration. Figure 7 shows the time cost curves generated by using TV-MAP and IIF-MAP, where 

labels indicate the average cost for each 5 iteration. The total average here is 1.2202s for TV-MAP and 

0.7385s for IIF-MAP respectively. It is easy to view that IIF-MAP needs few time than TV-MAP, and 

nearly 40% cost is reduced. This is because the computation of bilateral filtering can be relatively more 

convenient than that of TV diffusion term (27).  

 

FIGURE 7 

 

We shall note here that the results are provided just in our particular experimental context, which in usual 

not only depend on the algorithm itself, but also can change with the programming language, code 

optimization and even the configuration of the used computer. In our experiment, all of programs are coded 
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in C++. The computer used for simulation is with the configuration: 2.4GHz CPU and 1.0GBytes memory 

storage. 

 

We also study the effects of parameter Rσ and  by fixing the parameter n β at 0.25. Reconstructions 

using three different values of Rσ and various sizes of window  are shown in figure 8. Here smooth 

images are achieved by either large  or 

n

n Rσ , as which is indicated in section 2. Similarly, smooth 

regions with sharp boundary edges can also be well preserved by relatively small value of Rσ . For this 

particular experiment, 2.0=Rσ and 1=n  seem to give out the best reconstruction. However, it is worthy 

to note that too small Rσ  does not offer promising reconstructions as we can view from the first row of 

figure 8 ( 05.0=Rσ ). In such a case, pixels with only small difference to the center one would be 

overweighed so that numerous fault edges will be erroneously preserved and cause instead the noisy 

reconstruction. As indicated previously, given the similarity function (28) used in the bilateral filter, Rσ  

acts as an average edge threshold and the choice of which largely depends on the noise characteristics of 

measurement data. There are lots of approaches to the optimal choice of Rσ . For example, one can estimate 

Rσ  by either using the prior knowledge, such as the FBP reconstruction, or adaptively calculating it via 

the robust estimate method as it was recommended by Black et al [13]. Detailed discussion can be found in 

literature [5]. We shall refer the interested reader to these literatures for more details. 

 

FIGURE 8 
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3.3 Reconstruction of clinical data 

This section deals with the reconstruction for the real clinical brain data. PET raw data were measured by 

the currently state-of-art multi-ring PET/CT scanner (CTI Siemens Biograph Sensation 16). It can provide 

the highest transaxial resolution of 6.2mm FWHM and axial resolution of 4.3mm FWHM in case of 

two-dimensional imaging [24]. The data acquisition commenced with the arrival of the radioactivity in the 

human brain and lasted for about 30 minutes. A total number of 47 image planes were generated and the 

emission data for each plane were stored in term of sinogram with size 192×192. The reconstructed images 

were all set to the 128×128 pixel matrix with pixel size 2.0mm. Similarly, normalization of detector 

efficiencies was performed using measurements obtained from a rotating line source prior to image 

reconstruction. Random coincidences were measured using the delayed time window method. The random 

coincidences measured in every detector pair were subtracted from the total number of coincidences 

detected by that pair. 

 

Reconstructions for several selected image planes are shown in figure 9. The reconstructions were obtained 

by starting from a uniform initial image. The characteristics of the reconstructed images confirmed the 

findings based on simulation studies. Images in the first row of figure 9 were obtained by running 100 

iterations of the ML-EM algorithm. The ML-EM reconstruction was characteristically noisy. However, the 

bias in the ML-EM reconstruction decreases with the number of iterations even though the noise is 

increasing. For the using of IIF-MAP algorithm, we chose  to be 2 so that the resulting resolution can be 

appropriate to the above given system FHWM. Images shown in the second and third row of figure 9 were 

n
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obtained by running 100 iterations of TV-MAP and IIF-MAP respectively. Both MAP algorithms allow the 

continuation of the iterations without the noise artifact but TV-MAP is slightly inferior to IIF-MAP by 

producing several artefacts as demonstrated in the previous subsection. Because of the same size of used 

measurement data and reconstruction, the time costs when using these MAP methods were similar to the 

results as shown in the computer simulated experiments. Here TV-MAP needs 1.2326s while IIF-MAP only 

0.7322s for every iteration.  

 

FIGURE 9 

 

In addition to these reconstructions using MAP, the regularization parameter β  is chosen arbitrary since it 

has proved to be difficult in clinical routine, due to the fact that a given regularization weight produces 

different smoothing levels according to the patient dependent model. However, there exist a number of 

methods in the literature for estimating the regularization parameter in image restoration and reconstruction 

problems. A number of alternative approaches for selecting regularization parameters have also been early 

studied in [25], [26]. Presently, it is not clear which one of these techniques is most suitable for the present 

problem of clinical PET image reconstruction. Future work is needed to study the application of these and 

other methods to the present problem in order to determine the optimal method for selecting β . Finally, we 

do not provide any proof of the convergence of the IIF-MAP algorithm, as this will depend on the form of 

the used filter and even the value of β . However, empirical evidence suggests that it usually converges 

when the filter is as defined in section 2 and β  is chosen properly. 
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4. Conclusion 

To summarize, we have proposed the new method for PET image reconstruction. In this method, the 

commonly used diffusion based a priori regularization is naturally approached by the new generalized 

inter-iteration filtering scheme. Furthermore, to overcome the filtering task but pertain to the diffusion 

based MAP estimate, the extension nonlinear filter as well as the bilateral filter was employed, which 

preserves the salient features of reconstructed image while smoothes away the noise. The qualitative and 

quantitative evaluations of the reconstructions presented in this paper clearly indicated the feasibility and 

efficiency in the reconstructed images when the IIF coupled with the bilateral filter is used.  
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Figure 1: The inter-iteration filtering scheme 
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Figure 2: (a) the Hoffman brain phantom, (b)-(e) ML-EM reconstructions of the simulated emission data at 

iterations 10, 20, 50 and 100. 
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(a) (b) (c) 
Figure 3: Reconstructions of the brain phantom obtained by running 100 iterations of the IIF-MAP 

algorithm using the bilateral filter with (a) 15.0=β  (b) 25.0=β  (c) 35.0=β . ( 0.2Rσ =  and 1=n  

for all the case) 
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Figure 4: Comparisons of line profile at column 64 of reconstructed images.   
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Figure 5: The MSE between the simulated noise-free phantom image and the ML-EM and IIF-MAP (using 
different regularization parameter β ) reconstructed images as a function of iteration number. 
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(d) 
Figure 6: (a) The minimum MSE changes as a function of β  where the triangles locate the global 

minimum MSE as well the optimal β  for different MAP method; (b) and (c) are reconstructions using 

TV-MAP and IIF-MAP ( , ) respectively with optimal 1n = 0.2Rσ = β  indicated in (a); (d) The 

comparison of line profile of images shown in (b) (c). 
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Figure 7: Time cost curves generated by using TV-MAP and IIF-MAP. 
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Figure 8: The IIF-MAP Reconstructions with various bilateral filters. ( 25.0=β for all the case) 
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Figure 9: Reconstructions for three different slices using clinical brain PET raw data. From top to 
bottom: ML-EM, TV-MAP ( 0.01β = ), and IFF-MAP ( 0.15β = , 0.8Rσ = ) respectively. 
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