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Adaptive Time-Frequency Models for
Single-Trial M/EEG Analysis
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2 INRIA/ENPC/ENS Odyssée Laboratory, INRIA Sophia-Antipolis, 06902 France

Abstract. A new method is introduced for estimating single-trial magneto-
or electro-encephalography (M/EEG), based on a non-linear fit of time-
frequency atoms. The method can be applied for transient activity (e.g.
event-related potentials) as well as for oscillatory activity (e.g. gamma
bursts), and for both evoked or induced activity. In order to benefit from
all the structure present in the data, the method accounts for (i) spatial
structure of the data via multivariate decomposition, (ii) time-frequency
structure via atomic decomposition and (iii) reproducibility across tri-
als via a constraint on parameter dispersion. Moreover, a novel iterative
method is introduced for estimating the initial time-frequency atoms
used in the non-linear fit. Numerical experiments show that the method
is robust to low signal-to-noise conditions, and that the introduction of
the constraint on parameter dispersion significantly improves the quality
of the fit.

1 Introduction

A classical method for analyzing brain electric and magnetic waves in humans
consists in averaging many EEG or MEG trials, obtained in similar conditions,
in order to improve the signal to noise ratio (SNR).

When the waves are sufficiently time-locked with respect to the reference
time (usually the time of stimulation), the average can be performed directly in
the time-domain (“event-related potentials”, ERPs, in EEG and “event-related
fields”, ERFs, in MEG). For activity with higher time dispersion with respect
to one wave period, the resulting variation of phase across trials can cause the
waves to cancel out in the average signal. This is particularly relevant for high-
frequency activity (above 20 Hz), where a small time delay can cause a large
phase difference. This cancellation can be circumvented by averaging the power
of the signal in the time-frequency or time-scale plane. Several methods have
been introduced for evaluating the average increase of energy in given frequency
band, whether time-locked (“evoked” energy) or not (“induced” energy) (e.g.
[1]).

For both ERPs and oscillations, the averaging procedure relies on the as-
sumption of similarity of the activity of interest across trials. However, there is
often significant variability in shape and latency from one trial to another, even
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when measuring responses to repetitions of the exact same stimulus. This vari-
ability can arise from habituation effects, fluctuations in the level of attention
and arousal, or different response strategies.

Inter-trial variations are problematic when averaging. In particular, fluctu-
ations in latency result in a blurring of the average signal, producing a false
impression of events lasting longer than their actual duration. Moreover, com-
paring the amplitude of averages between conditions (for example, response to
rare events versus response to frequent events), as done routinely in event-related
potentials, does not permit to distinguish between an actual amplitude effect
across conditions or a higher dispersion in latencies within one condition.

Nevertheless, variability can also be a source of information. For example,
Jung and colleagues have demonstrated different trial-to-trial behaviors of event-
related waves measured on ICA components, some being phased-locked to the
stimulus and others to the subjects’ responses [2]. Recently, studies have demon-
strated correlations between the fluctuations of energy in the gamma band and
the phase of theta oscillations, indicating an interaction between activities at
different frequencies [3]. Variability between trials can also be used to mea-
sure relations between brain regions, or relations between different modalities
recorded simultaneously, such as EEG and functional MRI [4].

Many different classes of methods have been introduced for detecting trial-to-
trial variations in event-related potentials (ERPs) or event-related fields (ERFs).
These include spline models, autoregressive models, template matching, neural
networks and other multivariate classification methods, Bayesian analysis, non-
linear analysis.

A promising class of methods is based on time-scale (i.e. wavelet) analysis
and on time-frequency analysis. These methods permit to adapt the analyzing
functions to the signals of interest, based on prior shape information. Quian
Quiroga and colleagues have proposed to estimate single-trial ERPs by building
fixed wavelet filters based on the average signal [5]. Estimating the wavelet fil-
ters from the average signal is subject to the difficulties mentioned above, i.e.
that the average may not be fully representative of the single trials. The wavelet
basis used is orthogonal, which allows fast decomposition and reconstruction of
filtered signals, but is not translation-invariant and therefore ill-suited to repre-
sent latency jitters. Finally, the inter-trial fluctuations in latency or scale may
necessitate the selection of a large number of coefficients in the time-scale plane,
independently of the trial under consideration, which can be sensitive to noise.
Some of these drawbacks have been addressed by Benkherrat and colleagues [6],
who consider the average energy of the wavelet transforms of single trials instead
of the transform of the average, and by [7] who use translation-invariant wavelet
transforms. Statistical issues in the detection of activity have been studied in
the work of Durka and colleagues, who use the matching pursuit approach and
bootstrap resampling [8].

Up to now, most effort in single-trial analysis has been directed to slow-
varying ERPs (in the range of 1-20Hz). Less attention has been given to the esti-
mation of single-trial oscillatory activity, for example gamma activity around 40 Hz.
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Such oscillatory activity has been hypothesized to play a major role in the
communication between different brain areas, for example in feature binding
or matching stimuli to a target stored in memory (reviews in [9], [10]).

Another important aspect is the use of the full range of structure contained
in the data, i.e. not only according to its the temporal structure, but also to its
spatial structure (obtained directly across sensors or via estimated brain sources)
[11], [2] and its time-frequency signature.

The new method presented here is designed to track fluctuations in brain
electromagnetic activity, for any given set of frequency bands. Our method has
several original features. First, we introduce a methodology for defining a ref-
erence set of Gabor time-frequency atoms, or ”template”, that is capable of
modelling both low frequency event-related potentials and high frequency oscil-
lations. Second, the template is deformed across trials with nonlinear optimiza-
tion, which permits to follow accurately the fluctuations of the actual signal and
obtain a sparse final representation of the data. Third, the deformations for each
trial are constrained using information arising from all the trials, which increases
the robustness of the fit even for low SNRs.

Our method is closely related to Bayesian modelling, and can be in fact seen
as a Maximum a Posteriori (MAP) approach, but we are concentrating here on
the nonlinear minimization aspect. Our model could be be extended in order
to incorporate richer a priori information, or trial-to-trial variations in spatial
patterns (i.e., topographies) of the signals.

The principles of the method and the mathematical framework are introduced
first, followed by a description of the validation procedure and its results.

2 General Principles and Mathematical Framework

2.1 Decomposition into realizations of deformable templates

We suppose that the signal contains classes of EEG or MEG activity that have
a similar spatio-temporal structure. Such a structure will be approximated by
a parametric template with parameters par. The signal S(t, θ), as a function of
time t and spatial position θ, is modelled as the sum of a model signal Ŝ and a
noise term:

S(t, θ) = Ŝ(t, θ|par) + E(t, θ) . (1)

The model signal Ŝ is in turn composed of K repetitions (or trials) of N para-
metric templates

Ŝ(t, θ|par) =
N∑

n=1

K∑
k=1

βn,kTn(t− tn,k, θ − θn,k|par) . (2)

In the above model, inter-trial variability is apparent in the form of a spatio-
temporal shift by (tn,k, θn,k), and an amplitude modulation by βn,k. Additional
sources of inter-trial variability can be incorporated in the additional parameters
par. The expected value of the noise E(t, θ) is assumed to be zero.
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We further assume that a given template Tn, n ∈ {1...N}, can be decom-
posed as the product of a temporal pattern An and a spatial pattern (or topog-
raphy) Mn (see Section 3.1 for more details).

Tn(t, θ) = An(t)Mn(θ) . (3)

In the sequel, a simplified version of this model will be used, with N = 1, i.e.
only one template, making the template index n no longer necessary. Moreover,
the topography will be assumed stable across trials (θk = 0), simplifying the
model to

Ŝ(t, θ|par) =
K∑

k=1

βkA(t− tk|par)M(θ) . (4)

2.2 Time-Frequency Analysis

As we are interested in modelling signals across a wide range of frequencies
(e.g., event-related potentials or induced oscillations), we propose to use time-
frequency descriptors. With this in view, the Gabor atoms offer the best trade-off
between time and frequency compactness. The temporal template is modeled as
the linear combination of P Gabor atoms, in the real domain:

A(t) =
P∑

p=1

βk,pe
− 1

2σ2
k,p

(t−dk,p)2

cos(ωk,p(t− dk,p)). (5)

The number of atoms P is fixed (see section 3.1); the template temporal shift
dk,p is equal to the onset of the stimulation (i.e. the initial time for each trial).
The trial-specific parameters to be estimated are, for each atom, its latency,
amplitude, width and modulating frequency: par = {dk,p, βk,p, σk,p, ωk,p}.

The present study aims to model evoked potentials, hence the ratio between
the width and the frequency is kept fixed (similar to Morlet wavelets). For bursts
of oscillation, this constraint can be relaxed, in order to also adapt the number
of oscillations to each trial.

2.3 Cost Function

The model defined by (1), (4) and (5) can be fitted to the data by the non-linear
minimization of a cost function C(par) composed of two parts. The first part
C1(par) maximizes the fit to the data. The second part C2(par) minimizes the
dispersion of the parameters around their mean and avoids over-fitting the noise.
This can be formulated as:

C1(par) =
∑

t

[
S(t)− Ŝ(t|par)

]2

, C2(par) =
∑
k,j,p

[
parp

j,k − parp
j

std(parp
j )

]2

, (6)

with : t index of time samples, j index on parameters, p index on time-frequency
atoms; parp

j and std(parp
j ) the sought values for the parameter mean and stan-

dard deviation across trials, respectively.
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The complete cost function is

C(par) = C1(par)/var(E) + λC2(par) , (7)

where var(E) is the variance of the background noise, and λ a regularization
hyperparameter which balances the dispersion constraint.

The minimization is performed using the Levenberg-Marquardt algorithm,
which is suited for minimizing cost functions consisting of sum of squares. We
use the implementation provided in the immoptibox toolbox3 [12]. In a first step,
some quantities need to be estimated:

– the projection of the spatio-temporal data S(t, θ) into a single time-topography
template,

– the initial values of the parameters parinit = {βk,p, σk,p, dk,p, ωk,p}init,
– the hyperparameters λ, var(E), parp

j and std(parp
j ).

The next section presents strategies for estimating the time-topography sig-
nal projection, the hyperparameters and the initial values of the parameters.

3 Initialization of the Parameters

3.1 Time-Topography Decomposition

Many methods are available for decomposing spatio-temporal data (sensors ×
time) into fixed spatial topographies and corresponding time courses, as in (3).
Examples of such methods include dipolar source localization with fixed dipoles,
principal component analysis (PCA), independent component analysis (ICA),
and PARAFAC (e.g. when including the frequency dimension). Such decompo-
sitions rely on the assumptions that (i) the spatial and temporal aspects of the
activity of interest are independent of one another within a trial and (ii) that
there is no spatial variability from one trial to the other. Albeit these are strong
assumptions, they have however proven useful in a variety of situations. More-
over, they can be seen as a way of initializing spatially adaptive models such
as (2).

The Singular Value Decomposition allows to project the data into a lower
dimensional space that is tractable. In particular, if the data can be assumed to
originate from a single source, the SVD allows to recover its spatial topography
on the sensors. In a more realistic situation with several sources, the SVD can
be performed as a dimension reduction preprocessing, prior to ICA. In order to
select automatically the component that captures the temporal activity of the
source, we assess the reproducibility of the component across trials. A score for
each component is computed at each time point by dividing the mean energy by
the standard deviation of the component; we select the component with highest
score.
3 available at www2.imm.dtu.dk/ hbn/immoptibox/, in the Matlab (Mathworks, Nat-

ick, MA, USA) environment.
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3.2 Initial Time-Frequency Atoms

The parameter initialization for the time-frequency atoms is performed via an
iterative wavelet analysis. For this, Morlet wavelets are introduced, which are
Gabor atoms with a fixed number of oscillations, defined in the frequency domain
by:

Ψ ξ
s (ω) =

√
s

(4π)
1
4
e−

1
2 (sω−ξ)2 (8)

The shifting frequency ξ determines the number of oscillations of the wavelet over
its time-support. For a given shifting frequency ξ, the scale parameter s stretches
or compresses the wavelet, controlling simultaneously the time-support (propor-
tional to s) and the frequency (equal to ξ/(2πs)) at which the wavelet oscillates.
The optimal number of oscillations depends on the type of activity under exam-
ination, smaller for evoked potentials/fields and larger for oscillations. Therefore
a set of shifting frequencies is considered : ξ ∈ {1, 1.5, 3, 5, 9}.

An initial time-frequency decomposition W 0
k (t, ω) is obtained by projecting

each trial Sk(t) on a set of analyzing functions:

W 0
k (t, s, ξ) =

∫
Sk(t′)ψ

ξ

s(t− t′)dt′ . (9)

In the above relation, the time index t belongs to a time window [tk, tk + L]
containing the kth trial (tk defined in Section 2.2), and ψ denotes the complex
conjugate of ψ. The energy for each ξ is then averaged across trials

TF 0(t, s, ξ) =
1
K

∑
k

|W 0
k (t− tk, s, ξ)|2. (10)

The average energy TF 0(t, s, ξ) could be normalized by the average power
value in a baseline part of the window [1], [13]. One can also consider dividing
by the standard deviation of the noise power estimated at the point of inter-
est [6]. Such normalizations allow to be more robust to noise and to detect high-
frequency activity that is hidden in the original signal due to the 1/f behavior
of EEG and MEG.

The iterative parameter selection proceeds à la matching pursuit [14], itera-
tively subtracting from the single-trial data its projection on the atom ψξ0

s0 whose
parameters maximize the average energy:

(t0, s0, ξ0) = argmax(TF 0(t, s, ξ))

This leads to a new set of trials S1
k(t) on which the above-described proce-

dure can again be applied. The number of iterations P is determined by hand;
however, one could consider using a quantitative criterion, based for example on
the energy of the residuals after subtraction. The main difference with matching
pursuit resides in the use of the data over a collection of trials, thereby taking
advantage of the information arising from reproducibility across trials.
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3.3 Constraint on Parameters Dispersion

The hyperparameters parp
j and std(parp

j ) help to reduce the parameter disper-
sion across trials, in order to increase robustness to noise. We choose to estimate
these parameters from the data itself, in a first step that consists in minimizing
only the first part C1(par) of the cost function (6) (i.e., without the control of the
parameter dispersion). We make the assumption that the fit will be successful
for a majority of trials, failing only in a small proportion of outliers due to the
noise. The mean and standard deviation of each parameter are then estimated
with a robust MM-estimator [15].

3.4 Regularization Hyperparameters

The hyperparameters var(E) and λ appearing in (7) control the relative weights
given on the one hand to the quality of the fit (6), and on the other hand to the
constraint on dispersion C2 in (6).

The variance of the noise var(E) is estimated on the residuals after the first
fit (i.e., using only the first part of the cost function (6)), using robust estimators
as in 3.3.

The regularization parameter λ is estimated with the L-curve method. The
fit is performed using (7) for a series of λ ranging from 10−4 to 104, with a
higher sampling around λ = 1. The minimization procedure results in optimal
values Copt

1 and Copt
2 , for each λ. The L-curve method consists in finding the

inflection point in the curve Copt
2 (λ) = f(Copt

1 (λ)). This point is estimated as
the minimum of the cost function

c(λ) =
Copt

1 (λ)
std(Copt

1 )
+

Copt
2 (λ)

std(Copt
2 )

(11)

with std standard deviation across values of λ.

4 Methodology of Evaluation

First of all, simulations were performed to evaluate the robustness of the method
to different levels of noise, with a particular emphasis on the contribution of the
regularization term C2 in (6). Secondly, the method was applied to real data
originating from an oddball experiment [4].

4.1 Simulated data

A series of 50 event-related potentials (ERPs) were computed, corresponding to a
central radial source within a sphere, with 83 electrodes (10/10 system), at a sam-
pling frequency of 1 kHz. The potentials consisted of a sum of Gaussian-shaped
waves (N100-like and P300-like) and of high frequency oscillations (range 38-
42 Hz) with a Gaussian envelope. The latency, amplitude, width and frequency
parameters of the waves and oscillations were pseudo-random numbers with a
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truncated distribution, with values lying three standard deviations around the
mean. The latency parameter was assigned a skewed distribution, similar to that
of realistic reaction times. See figure 1 for an overview of the simulated signals.

Stationary background noise was simulated, with spatial and temporal cor-
relations ressembling real EEG data. This noise was obtained by distributing
dipoles uniformly within a sphere, with a random amplitude following a nor-
mal distribution [16]. Each channel was then filtered and scaled with an auto-
regressive filter, whose parameters had been fitted on real EEG data. The re-
sulting correlated noise was added to the simulated ERPs, with a multiplica-
tive factor corresponding to different values of the signal-to-noise ratio: SNR
∈ {0, 0.1, 0.5, 1, 3, 5, 10, 100, 106}. The SNR was computed as the ratio of the
sums of squares across all channels. For the high frequency oscillations, the data
and noise were first filtered with a 35-45 Hz bandpass filter before computing
the scaling factor.

For each SNR, a singular value decomposition (SVD) was applied to the
simulated data, and the time-course with the highest reproducibility across trials
was retained. Reproducibility was assessed by computing the average energy
across trials. The method was then applied on the time-course, across trials, as
described in the previous sections.

4.2 Real data

We used an EEG dataset recorded within the MRI scanner, from an simultaneous
EEG-fMRI oddball protocol presented in detail in [4]. In summary, the stimula-
tion consisted in pure tones, with low frequency tones presented frequently, and
high frequency tones presented rarely. The subject was asked to respond to the
rare tones by a button press. This protocol is known to provoke a stereotyped
positive response on the EEG around 300 ms, called P300.

5 Results

The data obtained after spatial filtering by SVD are presented in figure 1, along
with the iterative time-frequency decomposition, for a SNR of 100 and a SNR of
0.5. This demonstrates that the iterative decomposition is robust even for low
SNR. Figure 2 presents raster plots of the data across trials, for a SNR of 1, for
the raw data (left plot) and for the estimated atoms (right plot). For display
purposes, the data is sorted with respect to the simulated latency of the second
wave, an information that was not used during the fit. The algorithm was able to
recover the simulated waves. For each SNR, we have computed the correlation
at each trial between the fitted data on a SNR of 106 and the fitted data at
the SNR under consideration, with and without the constraint on parameter
dispersion (figure 3). Without the constraint on the parameters, the quality of
the fit deteriorates rapidly with decreasing SNR. The constraint allows the fit
to maintain a good quality up to a SNR of 0.5.
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The outcome of the fit on real data (auditory oddball in simultaneous EEG-
fMRI) is presented in figure 4. The application of the proposed method results
in a very significant denoising of this data, which had extremely low SNR due
to the simultaneous fMRI scanning.

6 Discussion

A new method has been presented for estimating single-trial EEG or MEG ac-
tivity, based on a non-linear fit. The method can be used for both transient (e.g.,
event-related potentials) and oscillatory (e.g., gamma bursts) activity, and for
both evoked or induced activity.

The method aims to use all the structure present in the data. First, it takes
advantage of the spatial structure via multivariate decomposition. Second, it uses
the time-frequency structure via atomic decomposition. Third, reproducibility
across trials is imposed via a constraint on parameter dispersion.

A novel method was introduced for estimating the initial time-frequency
atoms used in the non-linear fit, which runs in an iterative manner. This method
is similar to matching pursuit [14], with the originality of operating across trials.
We use Gabor atoms, which have good time-frequency properties, but it could be
interesting to learn the atom structure directly from the data. We also present
a novel non-linear minimization framework, contrary to previous approaches
using wavelet transforms [6], [7]. This leads to a more parcimonious (sparse)
description of the data, in particular for large jitters in the parameters (for
example latency jitters), which could result in higher robustness to noise.

The same data was used to estimate the hyper-parameters (mean and stan-
dard deviation of the parameters, used in the dispersion constraint) and the
actual parameters of the time-frequency atoms. Such an approach must be per-
formed with caution, since estimating (the hyper-parameters) and detecting (the
parameters of the atoms) on the exact same dataset could lead to a bias of the
results. However the risk of bias is low in our case, as the parameters for only
one trial are being estimated, based on hyper-parameters estimated on all trials;
i.e. the influence of the trial under investigation on the definition of the hyper-
parameters is low. Moreover, the robust estimation of the hyper-parameters fur-
ther lowers the influence of a given trial: if the parameters of a trial are outliers,
they are not taken into account in the computation of the hyper-parameters,
and therefore do not influence the estimation.

As shown by the tests on simulated and real data, the proposed method is ro-
bust to low signal-to-noise conditions. The introduction of a constraint on param-
eter dispersion, estimated from the data itself, significantly improves the quality
of the fit. Future work will concentrate on the estimation of high-frequency
(gamma) activity and on taking into account the structure of the noise.
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Fig. 1. Left column: Simulated data after spatial filtering, for a SNR of 0.5 (upper part)
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right column: time-frequency analysis used for the iterative definition of time-frequency
atoms, for p=1 (first atom) and p=2 (second atom). The maximum value indicated is
the maximum energy in the time-frequency plane with respect to the maximum energy
of the first iteration (i.e, first atom).
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Fig. 2. Left: original data for a SNR of 1. For display purposes, the data is sorted with
respect to the simulated latency of the second wave, an information that was not used
during the fit. Right: fitted atoms, with constraint on parameter dispersion.
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Fig. 3. Correlation between the fitted time-course at a given SNR and the fitted time-
course for a SNR of 106, considered as the reference. The use of a constraint on pa-
rameter dispersion (fit2, in red, upper curve) improves the results compared to a fit
without this constraint (fit1, in blue, lower curve).
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Fig. 4. Results for the oddball data. Left: histograms of parameters fitted in fit1 (no
constraint on dispersion). The red (light grey) vertical bars show the mean and standard
deviation of the parameters, which were not influenced by outliers (robust estimation).
Middle: raster plot original data (y-axis: trials corresponding to rare events), sorted by
reaction time (dark line). Right: result of the fitting procedure (fit2, with constraint
on the parameters).
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