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Coupling texture analysis and physiological modeling for liver dynamic
MRI interpretation

Muriel Mescam, Johanne Bézy-Wendling, Marek Kretowski, Krzysztof Jurczuk,
Pierre-Antoine Eliat, Damien Olivié

Abstract— We coupled our physiological model of the liver,
to a MRI simulator (SIMRI) in order to find image markers
of the tumor growth. Some pathological modifications related
to the development of Hepatocellular carcinoma are simulated
(flows, permeability, vascular density). Corresponding images
simulated at typical acquisition phases (arterial, portal) are
compared to real images. The evolution of some textural
features with arterial flow is also presented.

I. INTRODUCTION

Image analysis is a non invasive method used to precise the
diagnosis of liver lesions. In their visual inspection, radiolo-
gists mainly base their decision on anatomical criteria (num-
ber of lesions, position in the liver segments, shape, size),
and also on functional factors, like the lesion enhancement
after contrast agent injection. Some quantitative methods
like texture analysis can also give encouraging results in
lesions classification [5]. A physiological interpretation of
these textural features (that seem to be efficient in tumor
characterization) could ameliorate the semi-automatic image
analysis. This is particularly true when these image features
are strongly dependent on image acquisition conditions. In
MRI for instance, the sequence (Spin-Echo, Gradient Echo,
etc) and its parameters (Repetition Time, Echo Time, slice
thickness, etc) have a great influence on the contrast between
normal and tumoral tissues, but also on their texture. We
propose to couple a bi-level model of the liver, which takes
into account some physiological and pathological parameters,
with the dynamic MRI acquisition simulation, in order to
understand some relations between image characteristics and
the tumoral development.

II. CLINICAL PROBLEM

Hepatocellular Carcinoma (HCC) ranks as the fourth most
common cancer in the world. Its incidence is increasing
in many countries (4 per 100 000 persons in the United
States, 5 in Northern Europe, around 30 in China, and 40
in Western Africa) [9]. This cancer is the result of the
carcinogenesis process, from the regenerative nodule until
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the poorly differentiated HCC (Fig.1). A great number of
nodules are detected in images of cirrhotic patients, and in
this context, semi-automatic characterization methods able
to distinguish between regenerative nodule, dysplastic one
or HCC are needed. Texture analysis can be one of these
methods if it is able to extract pertinent image parameters,
representative of the main physiological changes appearing
during carcinogenesis. One of these main modifications con-
cern the arterial and portal blood flows, as it is represented
on the scheme of Fig.1.

Fig. 1. Evolution of blood supply during hepatocarcinogenesis (RN:
Regenerative Nodule, DNl,h: low, high grade Dysplastic Nodule,
HCCw,m,p: well, moderate and poorly differentiated HCC).

Other microvascular properties are also modified during
the tumoral development like transport across the vessels
wall. To find the most pertinent textural features, our phys-
iological models presented in §3 include these flows and
transport parameters.

III. METHODS

A. Vascular model

1) Macroscopic vascular model: In our computational
model detailed in [7], the liver is constituted of parenchyma
and vessels. The macrovascular network is made of 3 trees
(Hepatic Artery, Portal Vein, Hepatic Vein), whose growth is
simulated, considering at each growth cycle, the geometric
(length, caliber) and haemodynamic properties (blood flow
and pressure) (see Fig.2 left). This model is used to simulate
local pathological changes, like hyper-vascularization due
to a tumor development (vascular modifications are mainly
arterialization). The contrast product propagation, in normal
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Fig. 2. Model of the macrovascular hepatic network. Left: vascular
network (arterial and venous trees); right: macro-functional units
(red cells corresponding to tumoral tissue).

or tumoral tissues, is calculated by using all the vessels
characteristics. These 3 vascular trees are connected at the
level of macro-functional units (“macro-cells”) (Fig.2 right).
A macro-cell is made of parenchyma and very small vessels,
whose geometry is not considered, but whose enhancement
has to be known, in order to simulate realistic MRI im-
ages. At this level, compartmental modeling intervenes: each
macro-cell is replaced by an independent pharmacokinetic
model.

2) Model of transcapillary exchanges: Each macro-cell is
replaced by an independent five-compartments model (Fig.3)
whose entries (arterial and portal blood flows and concentra-
tions) depend on the corresponding data in the macrovascular
model. Their profiles are deduced from the contrast agent
propagation in the macrovessels until the terminal arterioles
and venules. This pharmacokinetic model integrates the
hepatic arteriole and portal venule as full compartments and
not just as simple inputs of the model. The inputs are the
terminal branches of the hepatic artery and portal vein, that
supply the hepatic lobule, considered here as the functional
unit of the liver parenchyma. The output is the terminal
hepatic venule, supplied by a capillary network that con-
stitutes the sinusoidal compartment. These compartments do
not only communicate with each other while the molecule is
propagating. Transmembranar exchanges also exist between
them and the interstitial fluid inside the lobule. A model of
these exchanges was already applied by Kellen et al [6] in
the cardiovascular system. In this work, several pathways
are considered for solute and fluid exchanges through the
vessels or capillaries membrane. For example, sinusoids,
that are a particular type of discontinued capillaries, present
large fenestrations, in addition to small and large pores.
In the opposite, arterioles and venules are supposed to be
impermeable in a normal liver. Some important parameters
whose variations characterize the tumoral stage evolution are
integrated. They are mainly transport parameters (vascular
permeability, hydraulic conductivity, reflection coefficient)
related to the molecule and to the vascular walls prop-
erties, but also exchange area, concentration and pressure
gradients. The molecule propagation is described by the
system of ordinary differential equations given below, where
the evolution of its concentration in each compartment is

computed as a function of time (V/S notations correspond to
Volumes/Surfaces).

Vha
dCha(t)

dt
= Q0

haC
0
ha(t)−Sha ×ha Js(t)−QhaCha(t) (1)

Vpv
dCpv(t)

dt
= Q0

pvC
0
pv(t)−Spv ×pv Js(t)−QpvCpv(t) (2)

Vsi
dCsi(t)

dt
= QhaCha(t)+QpvCpv(t)−Ssi ×si Js(t)

−QsiCsi(t) (3)

Vil
dCil(t)

dt
= Sha ×ha Js(t)+Spv ×pv Js(t)+Shv ×hv Js(t)

+Ssi ×si Js(t)−QLCil(t) (4)

Vhv
dChv(t)

dt
= QsiCsi(t)−Shv ×hv Js(t)−QhvChv(t) (5)

Concentrations in the five compartments are used to
compute the resulting concentration in each macro-cell
(average, weighted according to each compartment volume),
and thus T1 and T2 values necessary to generate the
3D phantom needed by the MRI simulator. Those new
relaxation parameters (after injection of contrast agent) are
obtained from the following equation:

R1,2observed = R1,2intrinsic + r1,2C(t) (6)

Where R1,2 are relaxation rates (s−1), r1,2 are relaxivities
(mM−1.s−1) and C(t) (mM) is the agent concentration.
Relaxation times are obtained by inversing relaxation rates
(T1,2 = 1/R1,2).

B. Model of MRI

A 3D MRI simulator, named SIMRI and recently de-
veloped by Benoit-Cattin et al. [2], was used to generate
simulated images of the liver. The simulation system is based
on the 3D Bloch equation resolution [3]. A 3D virtual object
constitutes the input of the simulator. Each voxel is defined
by three values describing the proton density PD, the spin-
lattice relaxation time T1 and the spin-spin relaxation time
T2, associated to the corresponding tissue. After application
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Fig. 3. Compartmental model of the hepatic microcirculation; Sym-
bols: Q (flows, mL.s−1), C(t) (concentrations, mM), V (volumes,
mL), J (fluxes, f stands for fluid, cm.s−1, and s stands for solute,
mmol.cm−2.s−1).
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of a MRI sequence on the input, the magnetization kernel
computes a set of RF signals, stored in the k-space. Addition
of noise to the k-space, associated to its filtering before the
reconstruction of the MR image using fast Fourier transform,
provides relatively realistic images.

C. Texture Analysis

Texture features were measured on MR simulated images
of the liver, using MaZda, a software developed for COST
B11 and B21 European projects [1] [11]. The purpose of
this study was to better understand the relationship between
physiological parameters, related to the model of the liver,
and textural parameters, related to the simulated images.
Variation of a physiological parameter can be expressed in a
sequence of images where it has been modified, or in a single
image on which its different values are expressed in different
regions. The next step consists in the selection of squared
ROI (Regions of Interest) on each image of the set of images,
or more generally, on each region expressing a particular
value of the parameter. Statistical (based on histogram, co-
occurence matrix and run length matrix) and transform-based
(Haar wavelet transform coefficients) methods are used to
compute texture parameters from each ROI. At this stage
of the analysis, a feature selection, based on Fisher criterion
[10] or on POE-ACC (lowest probability of error and average
correlation coefficient) [8], can be applied to the set of
parameters to reduce their number. The resulting parameters
thus allow some quick discrimination between tissues. As
an example of texture analysis, the arterial flow variation
has been studied and the results are presented in the next
section.

IV. RESULTS AND DISCUSSION

A. Evaluation of the bi-level model

After coupling both macro- and microscopic models, a
HCCp-like virtual tumor was generated based on a simu-
lated adult liver. Propagation of a Gd-DOTA contrast agent,
currently used in clinical routine [4], was simulated and
post-injection T1, T2 and PD maps were created at typical
arterial and portal phases. These maps were then used
to simulate MR images via the simulator SIMRI. Results
presented on Fig.4a correspond to images simulated after
applying a T1-weighted 3D Gradient Echo sequence at 3
Tesla (Repetition time (TR), 2.75ms, Echo time (TE ), 1.36ms,
Flip angle, 10◦, Slice thickness, 4mm). Corresponding real
images (obtained from the same acquisition parameters) are
presented on Fig.4b. At arterial phase, the amount of contrast
agent is more important in the tumor than in normal tissue.
Indeed, sinusoids permeability decreases as the fenestrations
tend to disappear, resulting in a weaker concentration of
the contrast agent in the interstitial fluid. In addition, the
arterial neovascularization, combined to an inhibition of the
portal one, produces an “arterialization” phenomena, known
as a typical symptom in hepatic tumoral development. In
consequence, the global concentration of Gd-DOTA in the
tissue presents a peak, close to the arterial one. The contrast
between tumoral and normal tissues is then higher at this

b. Real MR images of the livera. Simulated MR images of the liver

Arterial
Phase

Portal
Phase

Fig. 4. Comparison between simulated (a) and real (b) Dynamic
Contrast-Enhanced MR images of the liver. Acquisition condi-
tions: 3D Gradient Echo sequence 3T (TE = 1.36ms, TR = 2.75ms,
Flip Angle = 10◦, Slice Thickness = 4mm); Contrast agent: Gd-
DOTA; Up: arterial phase. Down: portal phase. Note: red arrows
indicate the tumor.

time, where T1 and T2 values are decreased in the tumor,
according to Eq.6. The T1-weighted gradient echo sequence
enhances the T1 contrast in images, brightening tissues with
lower T1, thus explaining the observed contrast (Fig.4). Later,
at portal phase, Gd-DOTA concentration has decreased and
the contrast is much less visible (Fig.4 down).

B. Texture analysis of simulated images

Five MR images were simulated from an artificial adult
liver, on which five different classes of macro-cells were
created. Those regions are similar in terms of geometrical
parameters (size of the tumor, etc) and, at the microscopic
level, in terms of transport parameters (permeability, etc) that
correspond to a HCC. In addition, they are not supplied
by the portal vein. The arterial flow entering the macro-
cells is the only parameter that varies from one region to
another, from normal tissue (around 0.14.10−3mL.s−1), to
a highly graded HCC (around 0.56.10−3mL.s−1). Corres-
ponding 128×128 MR images were then simulated, apply-
ing a 3D Gradient Echo sequence 3T (TE/TR/Flip angle,
1.36ms/2.75ms/10◦) at the arterial phase (simulation of a
Gd-DOTA injection and generation of T1, T2 and PD maps
at 16s). The resulting images are presented on Fig.5. Two
squared ROI were drawn on each tumoral region. Feature
extraction was done using MaZda, for five classes of two
samples each, corresponding to five different values of the
arterial flow. Although many parameters were computed
with different methods (statistical, wavelet-based, AR model-
based), only a few of them appeared to discriminate rather
well the different tissues. Both Fisher coefficients and POE-
ACC methods allowed to select ten parameters that are
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Qha = 0.14e-3 mL/s Qha = 0.21e-3 mL/s Qha = 0.31e-3 mL/s

Qha =0.42e-3 mL/s Qha = 0.56e-3 mL/s

Fig. 5. Effect of the arterial flow growth on simulated Dynamic
Contrast-Enhanced MR images of the liver. Acquisition conditions:
3D Gradient Echo sequence 128×128 (TE = 1.36ms,TR = 2.75ms,
Flip Angle = 10◦, Slice Thickness = 1mm, 3T); Contrast agent:
Gd-DOTA; arterial phase. Corresponding arterial flow values are
depicted on the figure.

susceptible to better discriminate and classify textures. As
an example, we chose to present two statistical parameters,
derived from the co-occurence matrix, that were selected
by both methods. The first one is the inverse difference
moment S(2,0)InvDfMom and the second one is the sum
variance S(3,-3)SumVarnc. Their evolution with arterial flow
is presented on Fig.6. A strong dependence of these two
parameters on the arterial flow appears, especially for the
sum variance (see Fig.6 right) that clearly decreases as the
flow grows. As a consequence, we might expect it to be
a good marker of arterial neovascularization (see Fig.1),
which is one of the main changes known to occur during
carcinogenesis.
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Fig. 6. Evolution of two co-occurence matrix-derived textural
features with the arterial flow that supplies the macro-functional
units (MFUs). left: S(2,0)InvDfMom (Inverse Difference Moment);
right: S(3,-3)SumVarnc (Sum Variance).

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we present a first evaluation of our bi-
level model of the hepatic vascularization, by coupling it
to MRI simulation and comparing simulated to real images.
Indeed, simulated MR images of the liver appeared to be
in good agreement with real ones. The possibility to change
physiological parameters such as transport parameters, flows,
etc, combined to our ability to simulate an image acquisition
process currently used in clinical routine (Dynamic Contrast-
Enhanced MRI), should allow us to better understand patho-
logical events. Such important goal necessitates to build
bridges between virtuality and reality, and thus requires to
establish relationships between physiological parameters and
textural features. With this aim in view, the computation of
some statistical parameters already showed some promising
results, particularly concerning the evolution of the arterial
flow during the neoangiogenesis.

B. Future Works

In order to provide more realistic images, and thus better
discrimination between textural parameters, several improve-
ments are foreseen, especially at the microscopic level where
new compartments should be added. Indeed, addition of cel-
lular compartments such as hepatocytes, Kuppfer cells, en-
dothelial cells, would allow the simulation of other transport
mecanisms (facilitated and active transport, phagocytosis,
etc). Therefore, the study of new contrast agents or even
therapeutic molecules biodistribution, will be possible with
the model.
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