I. Quere, D. Cooper, and C. Ferec, Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms, Hum Mutat, vol.23, pp.343-357, 2004.

F. Niel, J. Martin, D. Moal, F. Costes, B. Boissier et al., Rapid detection of CFTR gene rearrangements impacts on genetic counselling in cystic fibrosis, Journal of Medical Genetics, vol.41, issue.11, p.118, 2004.
DOI : 10.1136/jmg.2004.022400

C. Bombieri, A. Bonizzato, C. Castellani, B. Assael, and P. Pignatti, Frequency of large CFTR gene rearrangements in Italian CF patients, European Journal of Human Genetics, vol.5, issue.5, pp.687-689, 2005.
DOI : 10.1038/sj.ejhg.5201387

F. Hantash, J. Redman, K. Starn, B. Anderson, A. Buller et al., Novel and recurrent rearrangements in the CFTR gene: clinical and laboratory implications for cystic fibrosis screening, Human Genetics, vol.5, issue.1-2, pp.126-136, 2006.
DOI : 10.1007/s00439-005-0082-0

F. Hantash, A. Milunsky, Z. Wang, B. Anderson, W. Sun et al., A large deletion in the CFTR gene in CBAVD, Genetics in Medicine, vol.41, issue.2, pp.93-95, 2006.
DOI : 10.1097/01.gim.0000200945.54234.d7

J. Derelle, P. Levy, P. Ruszniewski, J. Martin, C. Costa et al., A new large CFTR rearrangement illustrates the importance of searching for complex alleles, Hum Mutat, vol.27, pp.716-717, 2006.

I. Ratbi, M. Legendre, F. Niel, J. Martin, J. Soufir et al., Detection of cystic fibrosis transmembrane conductance regulator (CFTR) gene rearrangements enriches the mutation spectrum in congenital bilateral absence of the vas deferens and impacts on genetic counselling, Human Reproduction, vol.22, issue.5, 2007.
DOI : 10.1093/humrep/dem024

M. Claustres, C. Guittard, D. Bozon, C. F. Verlingue, C. Ferec et al., Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France, Human Mutation, vol.57, issue.4, pp.143-156, 2000.
DOI : 10.1002/1098-1004(200008)16:2<143::AID-HUMU7>3.0.CO;2-J

E. Buratti and F. Baralle, Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9, Journal of Biological Chemistry, vol.276, issue.39, pp.36337-36343, 2001.
DOI : 10.1074/jbc.M104236200

M. Viel, C. Leroy, D. Georges, M. Claustres, M. Bienvenu et al., Novel length variant of the polypyrimidine tract within the splice acceptor site in intron 8 of the CFTR gene: consequences for genetic testing using standard assays, European Journal of Human Genetics, vol.13, issue.2, pp.136-138, 2005.
DOI : 10.1038/sj.ejhg.5201261

A. Millson, G. Pont-kingdon, S. Page, and E. Lyon, Direct Molecular Haplotyping of the IVS-8 Poly(TG) and PolyT Repeat Tracts in the Cystic Fibrosis Gene by Melting Curve Analysis of Hybridization Probes, Clinical Chemistry, vol.51, issue.9, pp.1619-1623, 2005.
DOI : 10.1373/clinchem.2005.052159

D. Kobler, H. Modi, and B. Goldman, Identification of an 11T allele in the polypyrimidine tract of intron 8 of the CFTR gene, Genetics in Medicine, vol.101, issue.2, pp.125-128, 2006.
DOI : 10.1097/01.gim.0000200217.85820.47

H. Cuppens, W. Lin, M. Jaspers, B. Costes, H. Teng et al., Polyvariant mutant cystic fibrosis transmembrane conductance regulator genes. The polymorphic (Tg)m locus explains the partial penetrance of the T5 polymorphism as a disease mutation., Journal of Clinical Investigation, vol.101, issue.2, pp.487-496, 1998.
DOI : 10.1172/JCI639

A. Disset, C. Michot, A. Harris, E. Buratti, M. Claustres et al., A T3 allele in theCFTR gene exacerbates exon 9 skipping in vas deferens and epididymal cell lines and is associated with Congenital Bilateral Absence of Vas Deferens (CBAVD), Human Mutation, vol.10, issue.1, pp.72-81, 2005.
DOI : 10.1002/humu.20115

J. Groman, T. Hefferon, T. Casals, L. Bassas, X. Estivill et al., Variation in a Repeat Sequence Determines Whether a Common Variant of the Cystic Fibrosis Transmembrane Conductance Regulator Gene Is Pathogenic or Benign, The American Journal of Human Genetics, vol.74, issue.1
DOI : 10.1086/381001

M. Taulan, A. Girardet, C. Guittard, J. Altieri, C. Templin et al., Large genomic rearrangements in the CFTRgene contribute to CBAVD, BMC Medical Genetics, vol.1, issue.6, p.22, 2007.
DOI : 10.1371/journal.pgen.0010049

J. Zielenski, R. Rozmahel, D. Bozon, B. Kerem, Z. Grzelczak et al., Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, Genomics, vol.10, issue.1, pp.214-228, 1991.
DOI : 10.1016/0888-7543(91)90503-7

P. Fanen, N. Ghanem, M. Vidaud, C. Besmond, J. Martin et al., Molecular characterization of cystic fibrosis: 16 Novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions, Genomics, vol.13, issue.3, pp.770-776, 1992.
DOI : 10.1016/0888-7543(92)90152-I

M. Chillon, T. Dork, T. Casals, J. Gimenez, N. Fonknechten et al., A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype, Am J Hum Genet, vol.56, pp.623-629, 1995.

W. Highsmith, L. Burch, Z. Zhou, J. Olsen, T. Boat et al., A Novel Mutation in the Cystic Fibrosis Gene in Patients with Pulmonary Disease but Normal Sweat Chloride Concentrations, New England Journal of Medicine, vol.331, issue.15, pp.974-980, 1994.
DOI : 10.1056/NEJM199410133311503

R. Don, P. Cox, B. Wainwright, K. Baker, and J. Mattick, ???Touchdown??? PCR to circumvent spurious priming during gene amplification, Nucleic Acids Research, vol.19, issue.14, p.4008, 1991.
DOI : 10.1093/nar/19.14.4008

URL : http://doi.org/10.1093/nar/19.14.4008

M. Lucarelli, F. Grandoni, T. Rossi, F. Mazzilli, M. Antonelli et al., Simultaneous cycle sequencing assessment of (TG)m and Tn tract length in CFTR gene, Biotechniques, vol.32, pp.540-542, 2002.

M. Lucarelli, L. Narzi, R. Piergentili, G. Ferraguti, F. Grandoni et al., A 96-well formatted method for exon and exon/intron boundary full sequencing of the CFTR gene, Analytical Biochemistry, vol.353, issue.2, pp.226-235, 2006.
DOI : 10.1016/j.ab.2006.03.022

M. Mcginniss, C. Chen, J. Redman, A. Buller, F. Quan et al., Extensive Sequencing of the CFTR gene: lessons learned from the first 157 patient samples, Human Genetics, vol.5, issue.4, pp.331-338, 2005.
DOI : 10.1007/s00439-005-0065-1

D. Baux, L. Larrieu, C. Blanchet, C. Hamel, B. Salah et al., Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients, Human Mutation, vol.74, issue.8, 2007.
DOI : 10.1002/humu.20513

A. Roux, V. Faugere, L. Guedard, S. Pallares-ruiz, N. Vielle et al., Survey of the frequency of USH1 gene mutations in a cohort of Usher patients shows the importance of cadherin 23 and protocadherin 15 genes and establishes a detection rate of above 90%, Journal of Medical Genetics, vol.43, issue.9, pp.763-768, 2006.
DOI : 10.1136/jmg.2006.041954

URL : https://hal.archives-ouvertes.fr/hal-00113441

C. Costa, M. Goossens, and E. Girodon, Simultaneous Molecular Haplotyping of Both IVS8 (TG)m and (T)n Tracts in the CFTR Gene: Still a Challenge, Clinical Chemistry, vol.52, issue.8, pp.1621-1622, 2006.
DOI : 10.1373/clinchem.2005.065383

J. Romero, C. Verlingue, and M. Claustres, Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens, N Engl J Med, vol.332, pp.1475-1480, 1995.

T. Dork, B. Dworniczak, C. Aulehla-scholz, D. Wieczorek, I. Bohm et al., Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens, Human Genetics, vol.100, issue.3-4, pp.365-377, 1997.
DOI : 10.1007/s004390050518