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Summary

We consider the estimation of the intensity and survival functions for a con-
tinuous time progressive three-state semi-Markov model with intermittently ob-
served data. The estimator of the intensity function is defined non-parametrically
as the maximum of a penalized likelihood. We thus obtain smooth estimates of
the intensity and survival functions. This approach can accommodate complex
observation schemes such as truncation and interval censoring. The method is
illustrated with a study of hemophiliacs infected by HIV. The intensity functions
and the cumulative distribution functions for the time to infection and for the

time to AIDS are estimated. Covariates can easily be incorporated into the model.

Key words: Three-state semi-Markov model, intensity function, pe-

nalized likelihood, splines, truncation, interval-censoring.
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1 Introduction

The three state model is useful in a variety of biomedical settings, especially those
concerned with characterizing an individual’s progression through various stages
of a disease. Many authors have worked on methods for analyzing the three-state
model in the context of AIDS (De Gruttola and Lagakos, 1989; Bacchetti and
Jewell, 1991; Frydman, 1992; Frydman, 1995; Kim, De Gruttola and Lagakos,
1993) and carcinogenicity testing (McKnight and Crowley, 1984; Lindsey and
Ryan, 1993; Kodell and Nelson, 1980; Portier and Dinse, 1987). Analysis in both
these contexts is complicated by the fact that the disease process is observed only
intermittently. None of the currently proposed methods are entirely satisfactory
when it comes to estimating the hazard or intensity function. The non-parametric
approaches tend to be unstable, while parametric approaches impose too many
assumptions. In this paper, we use smoothing methods to provide a compromise
between these two extremes.

Our approach is based on the penalized likelihood. We introduce an a pri-
ori knowledge of smoothness of the intensity functions, by penalizing the log-
likelihood by the sum of the square norms of the second derivative of the inten-
sity functions. The estimators are defined non-parametrically as the functions
which maximize the penalized likelihood. The solution is then approximated us-
ing splines. This approach, presented in section 2, is an extension to a three-state
model of methods for survival analysis, proposed by O’Sullivan (1988) and Joly,
Commenges and Letenneur (1998). We also show how it can be applied to regres-
sion models including the proportional hazards model. In section 3, the proposed

method is applied to AIDS data taken from De Gruttola and Lagakos (1989).
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2 The Model

2.1 The three-state model

The three-state model with irreversible transition is depicted in Figure 1. In its
application to AIDS, state 0 is “uninfected”, state 1 is “infected” and state 2 is
“AIDS”. The dates of transition between states may not be known exactly. When
there are successive visits, the time of occurrence of the event of interest is only
known to lie between two visits. In the case considered in this paper, the time
spent in state 0 may be left-truncated, interval-censored or right-censored and
the time spent in state 1 may be right-censored. Thereafter, Fj; is the cumula-
tive distribution function, oy is the intensity function and Ay is the cumulative
intensity function associated with the time spent in state [, [ = 0,1; for the

progressive model considered, k =1 + 1.

2.2 Observations and likelihood

Let X? be the time spent in state 0 by subject i. £? is a fixed truncation time.
X? is left-truncated because only individuals with X? > £? are observed. X}
is interval-censored, i.e., we only know that it lies in a known interval [L?, RY].
Given the previous observations of the process, we assume that the conditional
intensity of the point process of examination times is independent of the process
of transitions (examinations do not occur in response to the state of the patient).

Let X! be the time spent in state 1. We assume that X° and X' are in-
dependent (this is a semi-Markov model). T; is the time the subject i was last
seen. Therefore, T; may be the time of right censoring for the first transition (in
this case T; = LY), the time of right censoring for the second transition (in this
case T; = L}) or the time of the second transition. For the latter case, we have
X! =T, — X? with X? not exactly known. If X? is right-censored, X} is not

observed at all. We assume that the censoring time L}, for the second transition,
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is independent of X;.
The log-likelihood, conditional on the event X? > L, for n independent

observations, is

0

- 71 b 1(u —A12(T;—u 1 2
[l = ;IOg{e—Am(ﬁg) /LQ e~ Ao (w) (a01(u)e Ara(T; )) 1 (1(Ts — 1)) du} (1)

where the indicator d1; is equal to 0 if subject ¢ is right-censored for the first
transition (RY = +00), and is 1 otherwise. Similarly, the indicator dy; is defined
for the second transition; as noted above, if d;; = 0 then d; = 0. We shall denote
the log-likelihood as (g1, a12), since it can be expressed as a function of ag(.)
and g (.).

In the application in section 3, the data do not present left-truncation, thus

e An(Ld) = 1,

2.3 Penalized likelihood

In real life smooth intensity functions may be expected. To introduce such a
priori knowledge, we penalize the likelihood by a term which takes large values
for rough functions. The roughness penalty function chosen for the three-state
model is the sum of the square norms of the second derivatives of the intensities.

The penalized log-likelihood is thus defined as

n 2 " 2
pl(apr, a2) = oo, a12) —m/am (u)du—@/a12 (u)du (2)

where k; and k9 are two positive smoothing parameters which control the trade-
off between the data fit and the smoothness of the functions. Maximization of
(2) defines the maximum penalized likelihood estimators (MPnLE) Gy;(.) and
612(.) and hence Fyy(.) and Fi5(.). The smoothing parameters are chosen by the
cross-validation method presented in Joly et al. (1998). To choose the smoothing
parameters, and only for this step, we separate the three-state model into two

survival models. To choose k; we use the approximate cross-validation score for



a survival model with left-truncated and interval- or right-censored observations.
For the second transition, the exact date of infection is imputed to be the middle
of the censoring interval. ks is chosen using the approximate cross-validation score
for a survival model with only right-censored observations. Such an approach
can be used because the estimators are not very sensitive to small variations
of the smoothing parameters. It is theoretically possible to extend the cross-
validation method to the three-state model considered, but the maximum of

the approximate cross-validation score in two dimensions is difficult to obtain

1duosnuew Joyine yH

numerically.

2.4 Approximation of the estimators

The MPnLE cannot be calculated explicitly. However, it can be approximated to
any degree of accuracy using splines. Splines are piecewise polynomial functions

which are combined linearly to approximate a function on an interval. We use
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M-splines and I-splines, which are a variants of B-splines. For more details, see
Ramsay (1988) and Joly et al. (1998).

The estimator A(.) for a given transition is approximated by a linear combina-
tion of m I-splines: A(.) = 0I(.), where @ = (61, ..., 0,) and I(.) = (I1(.), ..., In(.))"-
By differentiation we obtain: &(.) = @M(.), where M (.) = (My(.), ..., Mm(.))7.
As there are two distinct times, we use two distinct bases of splines, possibly with
a different number of splines in each basis.

The approximation & of & is the function belonging to the space generated
by the basis of splines, which maximizes pl(c1, a12). The general penalized log-

likelihood for our case is therefore

RQ 014 ,
Zlog ( 0 Il(l: / eiolIl(u) {(elMl(u))e—02I2(Ti—u)} (OQMQ(E o ’U,))ém du)

—K1 / (O, M (v))? du — Ky / (0 MY () du.
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The vectors 51 and 52 for fixed k; and k5 are obtained by maximizing the log-
likelihood using a Marquardt’s algorithm (1963), which is a compromise between
the steepest descent and Newton-Raphson algorithms. When the two vectors
0, and 6, are obtained, all the functions of interest can be computed, as in a

parametric method.

2.5 Extension to regression models

Asin Joly et al. (1998) the penalized likelihood can be used to estimate the inten-
sity functions in a general regression model defined by: o, (.) = plad(.), 2.8k,
where o, (.) is the baseline intensity function from state [ to state k, 3, is a vec-
tor of regression parameters and 2}, is the vector of covariates for subject 7. Note

v

that the proportional hazards model is obtained by choosing ¢[u(.), v] = u(.)e".
The penalized log-likelihood used is therefore

n2 n2
1), 0%(): ZosBons ZuaB) ~ s [ i w)du s [ (wau (3
where Zy, is the matrix with rows equal to 2}, i = 1,...,n. The regression pa-
rameters and the baseline functions are estimated simultaneously by Marquardt’s

method.

2.6 Confidence intervals

The confidence intervals may be determined using the nonparametric percentile
bootstrap technique (Hall, 1992; Wang and Wahba, 1995)

To evaluate the method, we performed a simulation study. Specifically, we
applied the following steps: the data are resampled 200 times. For each point con-
sidered, we order the 200 values obtained; the lower bound and the upper bound
are respectively given by the 2.5th and the 97.5th empirical percentiles. Samples
of size 100 were generated from a gamma distribution. For each of 500 replica-

tions, we generated random samples X?, ..., X% and X1, ..., X! of i.i.d failure times
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and C?,...,C°% and (], ..., C} of i.i.d censoring times, where the C; were indepen-
dent of the X;. The observed samples were (Y, 11, Y], 021), ..., (Y0, 010, V.1, G2p)
where Y; = min(X;,C;) and §; = Ijx,<¢]. Note that if §;; = 0 we ignored Y;!
and dy;. X X', C° and C' have Gamma distributions (ot e **/T'(7)) with
parameters (v; «): (15;2), (15;2), (20;2) and (15;2), respectively. The percentage
of censoring was around 20% for the first transition and 50% for the second. The
smoothing parameters were chosen as explained above only for the first repli-
cation and were kept constant for the subsequent ones. The number of knots
was set to 7. The coverage rates of bootstrap confidence intervals of the survival
function at the four quintiles for the two transitions are given in Table 1, which

suggests that the method worked reasonably well.

3 Application to AIDS

To illustrate the method, we present an application to modeling the risk of HIV
infection and the risk of AIDS onset. The observations (L9, R?,T;, o) for 262
subjects are published in the articles of De Gruttola and Lagakos (1989) and
Frydman (1992) (there is no left-truncation). There are two distinct groups of
subjects. Among the 157 subjects of the “lightly treated” group, 95 had become
infected and 14 of these had developed AIDS or other clinical symptoms. In the
“heavily treated” group, there were 105 subjects, and among the 97 who became
infected, 29 developed AIDS or other clinical symptoms.

We used 12 knots and M-splines of order 4 for the approximation of each
intensity function. The smoothing parameters were chosen by the cross-validation
method as described in section 2.3. Then we maximized (2) for the values of
and k9 obtained with this first step. The cumulative distribution functions of
the two groups, presented in Figures 2 and 3, are in agreement with those of
De Gruttola and Lagakos (1989). Confidence intervals were evaluated using the

method decribed in section 2.6 applied to 100 equidistant points. Figures 4
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and 5 display the estimated intensity functions for the two groups and the two
transitions. It may be seen that the “heavily treated” group had a higher risk
than the “lightly treated” group of being infected and developing AIDS.

The proportional hazards assumption is particularly easy to check visually
by examining the graph of the smoothed estimated intensities. Indeed Figure 5
suggests that a proportional hazards assumption holds for the treatment for the
second transition. If we perform a semi-parametric proportional hazards model,
as described in section 2.5, the estimate of the relative risk to develop AIDS
between the “heavily treated” group and the “lightly treated” group is 2.22 (95%
confidence interval [1.16, 4.24]).

4 Discussion

We have shown that the penalized likelihood approach yields a method for analyz-
ing data arising from complex observation schemes and for providing estimators
of the intensity functions, which cannot be estimated using conventional non-
parametric methods. The approach can be applied to non-homogeneous Markov
models as well as to semi-Markov models. It should be possible to treat more

complex multi-state models, although numerical problems may arise.
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Captions for Figures

Figure 1: Progressive three-state semi-Markov Model.

7 1s the time since the first transition.

Figure 2: Estimated cumulative distribution function of times of HIV serocon-
version (solid line) for heavily (upper curve) and lightly treated groups (lower

curve) and 95% confidence intervals (dashed line).

Figure 3: Estimated cumulative distribution function of induction times between
HIV seroconversion and onset of symptoms (solid line) for heavily (upper curve)
and lightly treated groups (lower curve) and 95% confidence intervals (dashed

line).

Figure 4: Estimated intensity function of times of HIV seroconversion for heavily

(solid line) and lightly treated groups (dashed line).

Figure 5: Estimated intensity function of induction times between HIV serocon-
version and onset of symptoms for heavily (solid line) and lightly treated groups

(dashed line).
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Table 1
Coverage rate of bootstrap confidence intervals of the survival function

at the four quintiles for the two transitions.

02 04 06 038
First transition 944 94 926 92.8
Second transition 96 944 94 92.6
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