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Abstract

The reduction of viral load is frequently used as a primary endpoint in
HIV clinical trials. Non-linear mixed-effects models are thus proposed to
model this decrease of the viral load after initiation of treatment and to
evaluate the intra- and inter-patient variability. However, left censoring due
to quantification limits in the viral load measurement is an additional chal-
lenge in the analysis of longitudinal HIV data. An extension of the Stochastic
Approximation Expectation-Maximization (SAEM) algorithm is proposed to
estimate parameters of these models. This algorithm includes the simulation
of the left-censored data in a right-truncated Gaussian distribution. Simula-
tion results show that the proposed estimates are less biased than the usual
naive methods of handling such data: omission of all censored data points, or
imputation of half the quantification limit to the first point below the limit
and omission of the following points. The viral load measurements obtained
in the TRIANON-ANRSSI clinical trial are analyzed with this method and a
significant difference is found between the two treatment groups of this trial.
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MCMC algorithm; Nonlinear mixed-effects models; SAEM algorithm

1 Introduction

HIV viral load is a widespread marker of the evolution of HIV infected pa-
tients (1); the reduction in HIV viral load is frequently used as the primary
endpoint in clinical trials to evaluate the efficacy of anti-viral treatments (see
for example 2; 3; 4; 5; 6; 7; 8). Non-linear mixed-effects models (NLMEM)
can be used in these longitudinal studies to exploit the richness of the dy-
namics seized by repeated measurements and to account for inter- and intra-
patient variability in viral load measurements. In addition, understanding
the mechanism of the large inter-patient variability may help in making ap-
propriate clinical decisions and providing individualized treatment. Unfor-
tunately, all available assays of viral load measurements have a low limit of
quantification (LOQ), generally between 20 and 400 copies/ml. Besides, the
proportion of subjects with a viral load below LOQ has increased with the
introduction of highly active antiretroviral treatments. Working with such
left-censored data complicates the study of longitudinal viral load data. This
issue is common in other longitudinal studies with LOQ, such as pharma-
cokinetics or pharmacodynamics, which also widely use NLMEM.

This paper aims to develop a reliable inference based on maximum like-
lihood (ML) theory for HIV dynamics models with left-censored viral load
and NLMEM. It is indeed important to obtain reliable estimates of the viral
dynamic parameters, that can be used to evaluate antiviral therapies through
comparison of treatment groups.

To address the estimation problem in longitudinal data analysis contain-
ing censored values, naive procedures such as omitting the censored data
or imputing a fixed value (e.g., the quantification limit or half the limit)
are combined with usual estimation methods of mixed models (see Beal (9)
for a comparison of classical procedures in NLMEM). However, the statis-
tical properties of such procedures are unclear. More inventive approaches
propose multiple imputations of the censored values, by substituting a rea-
sonable guess for each missing value. For example, in linear mixed models,
Hughes (10) proposes a Monte-Carlo version of the Expectation Maximiza-
tion (EM) algorithm (11), taking into account the censored values as missing
data. Hughes (10) shows that his approach significantly reduces the bias
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associated with naive imputation procedures. Jacqmin-Gadda et al. (5) pro-
pose a direct maximization of the likelihood using an iterative process for
linear mixed models as well, including an autoregressive error model. They
combine two optimization algorithms, the Simplex and the Marquardt algo-
rithms.

For nonlinear mixed models, the problem is more complex, the estimation
of such model parameters being difficult even without censored observations.
Indeed, because of the non linearity of the regression function in the ran-
dom effects, the likelihood of NLMEM cannot be expressed in a closed form.
Consequently, several authors propose some widely used likelihood approx-
imation methods, such as linearization algorithms, which are implemented
in the NONMEM software and in the nlme function of Splus and R soft-
ware (12; 13); or Laplacian or Gaussian quadrature algorithms, which are
implemented in the NLMIXED Macro of SAS (14). Wu and Wu propose
a multiple imputation method for missing covariates in NLMEM based on
a linearization algorithm (15). However, none of these algorithms based on
likelihood approximation can be considered as fully established theoretically.
A different point of view can be taken, the individual parameters and the
censored values being considered as non-observed data. The EM algorithm
is then the most adapted tool to estimate incomplete data models. Because
of the nonlinearity of the model, stochastic versions of the EM algorithm are
proposed. Wu (16; 17) introduces MCEM algorithms, with a Monte Carlo
approximation of the Expectation step, adapted to both NLMEM and the
censoring problem of observations and covariates. This Monte Carlo im-
plementation is based on samples independently and identically distributed
from the conditional density, requiring Markov Chain Monte Carlo (MCMC)
procedures. The replication choice of the Monte Carlo sample is a central
issue to guarantee convergence and this remains an open problem. Wu pro-
poses an “exact” MCEM (17) but emphasizes that this MCEM algorithm
is very slow to converge. Indeed simulations of these large samples at each
iteration are time consuming. To address this computational problem, Wu
also proposes an approximate MCEM (16; 17) using a linearization of the
model leading to an approximate ML method.

As an alternative to address both the point-wise convergence and the
computational problem, stochastic approximation versions of EM (SAEM)
are proposed for NLMEM with no censored-values (18; 19). This algorithm
requires a simulation of only one realization of the missing data at each
iteration, avoiding the computational difficulty of independent sample sim-
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ulation occurring in the MCEM and shortening the time to simulate. In
addition, point-wise almost sure convergence of the estimate sequence to a
local maximum of the likelihood is proved by Delyon et al. (18) under con-
ditions satisfied by models from the exponential family. Girard and Mentré
(20) propose a comparison of these estimation methods in NLMEM using
a blind analysis, showing the accuracy of the SAEM algorithm in compar-
ison with other methods. Especially, the computational convergence of the
SAEM algorithm is clearly faster than those of the MCEM algorithm. How-
ever, this current SAEM algorithm is only appropriate for NLMEM without
censored-values.

The first objective of the present paper is thus to extend the SAEM
algorithm to handle left-censored data in NLMEM as an exact ML estimation
method. We include in the extended SAEM algorithm the simulation of the
left-censored data with a right-truncated Gaussian distribution. We prove the
convergence of this extended SAEM algorithm under general conditions. The
second objective of this paper is to illustrate this algorithm with a simulation
study in the HIV dynamics context. Furthermore, we compare the extended
SAEM algorithm with more classical approaches to handle left-censored data
such as omission or imputation of the censored data, on the same simulation
study.

After describing the model and the notations (Section 2), Section 3 de-
scribes the extended SAEM algorithm. Section 4 reports the simulation study
and its results. We simulate datasets using the bi-exponential model for HIV
dynamics proposed by Ding and Wu (6), and evaluate the statistical proper-
ties of the extended SAEM parameter estimates and the classical approaches.
Particularly, we evaluate 2 comparison group tests, the Wald test and the
likelihood ratio test, provided by the SAEM algorithm. We then apply the
extended SAEM algorithm to the TRIANON-ANRS 81 clinical trial of HIV
treatment in Section 5. The aim of this new analysis of the TRIANON data
is to show the ability of NLMEM to describe the evolution of the viral load
and to test a treatment’s effect between the 2 treatment groups, in the pres-
ence of left-censored observations. Section 6 concludes the article with some
discussion.
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2 Models and notations

Let us define y; = (yi1, - - -, Yin,; )" where Y;; is the response value for individual
i at time ¢;;, i =1,...,N, j =1,...,n;, and let y = (y1,...,yn). Let us
define an NLMEM as follows

Yij = f(di,ti;) + 9(0i, tij) €4,
e; ~N(0,0%I,) and

where f(-) and/or ¢(-) are nonlinear functions of ¢;, €; = (gi,...,&m,;)"
represents the residual error, ¢; is a p-vector of individual parameters, u is
the k x p-matrix of fixed effects, X; is the k-vector of known covariates, b;
is a p-vector of random effects independent of ¢;, 02 is the residual variance,
I,,, the identity matrix of size n; and (2 quantifies the covariance of the inter-
individual random effects.

Because of assay limitation, when data y,;; are inferior to the limit of
quantification (LOQ), we do not observe y;; but only the censored value
LOQ. These data are usually named left-censored data. Let denote I, =
{(6,7)|yi; = LOQY} and I.ens = {(4,7)]y;; < LOQ} the index sets of the
uncensored and censored observations respectively. For (i,7) € Ieens, let
yii"* = yi; denote the unknown value of the censored observation j of subject
i. Let denote y{*** the vector of censored observations of subject i. Finally,

we observe ' o
pbs — yij if (27]) € Iobs>
Yij LOQ if  (i,]) € Lens.
We denote y¢" = (yf*, ..., y5*) as the observations of subject i and y* =
(ysb%, ..., y%*) the total observations dataset.

The maximum likelihood estimation is based on the log-likelihood func-
tion L(y°; 6) of the response y°** with 6 = (u, ), 02) the vector of all the
parameters of the model

N
L(y*; 0) = log (H / P2,y ¢33 0) s dyf””) : (1)
=1

where p(y?°%, y¢"*, ¢;; 6) is the likelihood of the complete data (y¢*, y™*, ¢;)

1
of the i-th subject. Because the random effects ¢; and the censored observa-

tions y{“"® are unobservable and the regression functions are nonlinear, the

4



foregoing integral has no closed form. The complete likelihood of the i-th
subject is equal to:

p( Zobs’ ylcens’ ¢i7 H p ylo]bs‘qs“ (¢Zv 9) H <yzcjen3‘¢“ ) (d)h 9)7
(7’ ])elob.s (iyj)elcens

with

(yfjbs|¢i; ) - ﬂ-(yfjbsaf(thtij)?OQ 2(¢Za zy)) Yi; >LOQ> if (Z)j> S -[Obs and
<y;:jens|¢i; ) ( A f(¢i7tij)70 92(¢27 ’Lj)) Yi; <LOQ> lf (Z,j) S Icen37
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where 7(x;m, v) is the probability density function of the Gaussian distribu-
tion with mean m and variance v, evaluated at z.

3 Estimation algorithm

3.1 The SAEM algorithm

The EM algorithm introduced by Dempster et al. (11) is a classical approach
to estimate parameters of models with non-observed or incomplete data. Let
us briefly cover the EM principle. Let z be the vector of non-observed data.
The complete data of the model is (y,z). The EM algorithm maximizes
the Q(0]0") = E(L.(y, z;0)|y; @) function in 2 steps, where L.(y, z;0) is the
log-likelihood of the complete data. At the m-th iteration, the E step is
the evaluation of Q(0) = Q(06,,_1), whereas the M step updates 6,,_;
by maximizing @,,(f). For cases in which the E step has no analytic form,
Delyon et al. (18) introduce a stochastic version SAEM of the EM algorithm
which evaluates the integral @,,(0) by a stochastic approximation procedure.
The authors prove the convergence of this algorithm under general conditions
if L.(y, z;0) belongs to the regular curved exponential family
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Le(y, z0) = —A(0) + (S(y, 2), ®(0)),

where (.,.) is the scalar product, A and ® are 2 functions of ¢ and S(y, 2)
is the minimal sufficient statistic of the complete model. The E step is then
divided into a simulation step (S step) of the missing data 2™ under the
conditional distribution p(z|y; é\m_l) and a stochastic approximation step (SA
step) using (Ym)m>0 a sequence of positive numbers decreasing to 0. This SA
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step approximates F [S (y, z)|§m_1] at each iteration by the value s, defined

recursively as follows
Sm = Sm—1 T ’Ym(s(y? Z(m)) - Sm—1>'
The M step is thus the update of the estimates /g\m—l
O, = arg max (—A(0) + (s, 2(6))) -

Let us detail the sufficient statistics needed for evaluation at the SA step
of the extended SAEM algorithm for the nonlinear mixed models previously
presented. The sufficient statistics are S = SV ¢, S@ = SV ¢? and
S =37 (is — f(¢ir tig))?, where yy; =y if (i, §) € Lops and y;; =y if
(7,7) € Ieens- Therefore, at the m-th iteration of SAEM the M-step reduces
to

~ 1

l’l’m - N8m7
— 1

2 = —g@ _ (g(1)y2 d
w, VS (s,,/)" an
~ 1

2 s )]
T = N

In cases in which the simulation of the non-observed vector z cannot be
directly performed, Kuhn and Lavielle (19) propose to combine this algorithm
with a Markov Chain Monte Carlo (MCMC) procedure. The convergence
of this SAEM algorithm is ensured under general conditions; the 2 main
conditions are presented below (see Kuhn and Lavielle 21, for technical
conditions)

(SAEM 1) For any 0 € O, the Gibbs algorithm generates a uniformly
ergodic chain which invariant probability is p(z|y; ).

(SAEM 2) For all m in the integer set N*, ~,,, € [0,1],> " 7m = 00
and Y 42 < oo.

For NLMEM with left-censored data, the nonobserved vector is z =
(¢, ye™), with ¢ = (¢1, ..., ¢n) being the individual parameters vector and
yeers = (yie . y$™) the left-censored data vector. The S step of the
SAEM algorithm is the simulation of the missing data (¢, y°"*) under the
posterior distribution p(¢, y*"*|y°*; #). This step can be performed by use of
a Gibbs sampling algorithm. At the m-th iteration of the SAEM algorithm,

the Gibbs algorithm is thus divided into 2 steps

6
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1. Simulation of ¢™ by use of a Metropolis-Hastings (M-H) algorithm
constructing a Markov Chain ¢ with p(-|y°*, y°"s(m=1: 0, 1) as the
unique stationary distribution,

2. Simulation of yc™s(™) with the posterior right-truncated Gaussian dis-
tribution p(-|y°*, ¢™; 0,,_1).

Consequently, under assumptions (SAEM1) and (SAEM2) and general
additional conditions, by applying the convergence theorem of Kuhn and
Lavielle (19) the estimate sequence (6,,,),>0 produced by the extended SAEM
algorithm converges towards a (local) maximum of the likelihood L(y°"; .).

Samson et al. (22) propose to estimate the likelihood function with use of
an importance sampling procedure and detail its implementation. They es-
timate the Fisher information matrix combining a stochastic approximation
approach and the Louis’ missing information principle (23): the Hessian of
the log-likelihood of the observed data can be obtained almost directly from
the simulated missing data (see Kuhn and Lavielle 19, for more implemen-
tation details). We adapt their estimates of the likelihood and the Fisher
information matrix to the extended SAEM algorithm, to implement the 2
comparison group tests, the Wald test and the likelihood ratio test.

3.2 Computational aspects

The convergence of the SAEM algorithm is ensured under the 2 assumptions
(SAEM 1) and (SAEM 2), which require careful choices of the implemen-
tation of the Gibbs algorithm and the stochastic approximation step size
respectively.

3.2.1 Gibbs algorithm

The convergence of the Gibbs algorithm depends on the M-H algorithm gen-
erating ¢ and the simulation method generating y"*.

At the m-th iteration of the SAEM algorithm, the M-H algorithm pro-
ceeds as follows: a candidate ¢ is simulated with a proposal distribution
g5, - The candidate is accepted (i.e. ¢ = ¢°), with the acceptation
probability p

o p(¢c|yobs’ ycens(mfl); é\m—l) %G, (¢c|¢(m—1))
£ = 1min = ~ (m—l) )’ 1 )
p(gb(mfl) |yobs’ ycens(mfl); emfl) q9m-1 (gb |¢ )

7
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and the candidate is rejected (i.e. ¢™ = ¢(™~1), with probability 1 — p.
We propose the 3 following proposal distributions 4, for the M-H pro-
cedure

1. qél) is the prior distribution of ¢, that is, the Gaussian distribution

m—1
~

N(ﬁm—h Qm—1)7

2. qg) is the multidimensional random walk A (¢, )\Qm_l), where \

m—1

is a scaling parameter chosen to ensure a sufficient acceptation rate,

3) . . - . .
3. qé) is a succession of p unidimensional Gaussian random walks: each

m—1

component of ¢ is successively updated.

Then, an efficient simulation method has to be implemented to generate

yfjns(m) for all (i,7) € Ieens with the right-truncated Gaussian distribution

with mean f (¢§m),tij), variance equal to 2, ; gZ(ngm) ,t;;) and truncated
at the right by the value LOQ. We implement the accept-reject algorithm
proposed by Robert (24) because of its simplicity and because it slightly
improves upon previous algorithms developed by Gelfand and Smith (25).

This algorithm is composed of the following steps

2
1. compute @ = SHEH

)

2. simulate z with the translated exponential distribution £(«, C') with
density p(z|a, C') = aexp(—a(x — C))1.>c,

3. compute p(z) = exp(—(z — a)?/2),

4. simulate u with Ujg yj,

5. ifu < p(x), then keep x and compute yfjns(m) = f(gbgm), tij)—x’a\m_lg(gbgm), tij),

else return to step (2).

The simulation of = with the translated exponential distribution &£ («, C')
in step (2) is performed by simulating u with a uniform distribution ¢[0, 1]
on the unit interval and then by computing = —< In(1 — u) + C.

With the proposal distributions detailed below, this Gibbs algorithm con-
verges and generates a uniformly ergodic chain with p(¢, y°e"$|y°>; 0) as the
stationary distribution, thus fulfilling the assumption (SAEM 1).
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3.2.2 Stochastic approximation step size sequence

The sequence (Y )m>0 has to fulfill the assumption (SAEM 2). We recom-
mend the use of 7, = 1 during the first M; iterations 1 < m < M;, and
Ym = (m — M)~ during the last M, iterations. Indeed, the initial guess 6
may be far from the maximum likelihood value and the first iterations with
Ym = 1 allow for converging to a neighborhood of the maximum likelihood
estimate. Furthermore, the inclusion of a hybrid Gibbs procedure (instead
of a Metropolis-Hastings procedure in the classic SAEM algorithm) slows up
the convergence of the extended SAEM algorithm. The convergence is mon-
itored by graphical criterion. The choice of M; and Mj values and (Y, )m>0
are adapted according to the graphical convergence of all the parameter es-
timates.

4 Simulation study

4.1 Simulation settings

The first objective of this simulation study is to illustrate the main statisti-
cal properties of the extended SAEM algorithm in the context of HIV viral
dynamics (bias, root mean square errors, group comparison tests). The sec-
ond objective is to compare the extended SAEM algorithm to some of the
classical approaches proposed to take into account a censoring process.

We use the bi-exponential model for initial HIV dynamics proposed by
Ding and Wu (6) to simulate the datasets

f(i, tig) = logy(Prie M + Pye=?2%4),

This function is a simplified analytical solution of a differential system de-
scribing HIV viral load decrease during anti-retroviral treatment proposed
by Perelson et al. (1). It has p=4 individual parameters: Py;, Py; are the
baseline values and Ay;, Ao; represent 2-phase viral decay rates. These pa-
rameters are positive and distributed according to a log-normal distribution.
Thus, ¢; and p take the following values: ¢; = (In Py, In Py, In Ay, In Ay;)
and g = (In P;,In Py, In Ay, In Ay). We assume identical sampling times for all
subjects: for all 2 in 1,..., N, t;; =t; for j = 1,...,n. Additive Gaussian
random effects are assumed for each parameter with a diagonal covariance
matrix Q. Let w? = (w}, w3, w2, wj) denote the vector of the variances of the
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Figure 1: Convergence of the SAEM parameter estimates for one simulated
dataset with N = 40 subjects (semi-log scale)

random effects. Additive Gaussian error is assumed with a constant variance
o? (ie. g(¢i,t;) =1 for all 4, j).

For the fixed effects, the values are those proposed by Ding and Wu (6):
InP, =12, InP, = 8, InA\; = In(0.5), In Ay = In(0.05). The inter-subject
variability is identical for the 4 parameters: w? = w3 = w3 = w; = 0.3
corresponding to a variation coefficient of 55%, which is a realistic inter-
subject variability in the context of HIV dynamics. We chose a variance
o = 0.065, which corresponds to a constant variation coefficient of 15% for
the viral load. With the Matlab software, we generate N=40 total number
of subjects with n=6 blood samples per patient, taken on days 1, 3, 7, 14,
28 and 56. We consider the same limit of quantification as Ding and Wu:
LOQ = log,,(400) =~ 2.6.

The convergence of the SAEM algorithm on a simulated dataset is illus-
trated in Figure 1. The initial estimates are arbitrarily chosen for all the
parameters. During the first M; = 3000 iterations, the estimates converge to
a neighborhood of the maximum likelihood. Then, smaller step sizes during
My = 1000 additional iterations ensure the almost sure convergence of the
algorithm to the maximum likelihood estimate. We implement the extended
SAEM algorithm in a Matlab function. It takes about 120 s for the extended
SAEM algorithm to converge with 4000 iterations on a conventional Intel
Pentium IV 2.8 GHz workstation.

The conditional expectation E(y°"*|y°**) of the censored values can be

10
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Figure 2: Expectation of the censored values E(y°"*|y°*) evaluated by the
extended SAEM algorithm as a function of the true simulated values y that
are below the LOQ (2.6) on a simulated dataset.

evaluated from the posterior mean of the y“"* simulated during the last iter-

ations of the extended SAEM algorithm. Figure 2 illustrates this evaluation
on a simulated dataset: E(y°"$|y°**) evaluated by SAEM is plotted as a func-
tion of the true simulated values y that are below the LOQ for this simulated
dataset. The extended SAEM algorithm provides satisfactory expectation of
these censored values.

4.2 Evaluation of estimates

Our aim is to evaluate and compare the estimates produced by the extended
SAEM algorithm with those produced by 2 estimation approaches recom-
mended in the presence of left-censored data. We fit the simulation model
and compute the relative bias and relative root mean square error (RMSE)
for each component of 6 from 1000 replications of the trial described below.

We first assume that no censoring is present in the viral load. We esti-
mate the datasets using the classical SAEM algorithm; this bias and RMSE
are considered the benchmark for the comparison of the 3 methods on the
censored datasets described below.

We then censor the simulated datasets by censoring observations that are
below the LOQ. The censoring represents, on average, 0% of the observations

11
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Table 1: Relative bias (%) and relative root mean square error (RMSE)
(%) of the estimated parameters evaluated from 1000 simulated trials on
the uncensored datasets (all data) with the SAEM algorithm and the left-
censored datasets with 2 classic methods (M7 and M) and with the extended
SAEM algorithm (ML).

Parameters Bias (%) RMSE (%)
all data  left censored data all data left censored data
M, My ML M, My ML
In Py 0.01 0.03 0.32 0.03 0.77 0.78 0.93 0.77
In Py 0.01 264 10.71 0.23 1.29 322 10.88 1.63
In A\ 0.98 2.67 12.94 0.57 12.47 1255 19.76 12.36
In A\ 0.04 10.46 22.88 0.62 3.09 11.45 2336 3.98
w? 0.28 3.69 37.51 4.26 24.17 26.55 49.60 26.30
w3 2.20 12.67 24.81 6.21 26.65 37.15 5831 37.70
w3 1.97 6.85 12.563 1.67 22.48 23.03 31.01 23.05
w32 0.88 47.13 98.331 6.59 25.66 55.98 113.53 36.85
o? 0.51 10.31 440.77 0.63 16.34 26.24 453.24 19.34

at days 1 and 3, 0.07% at day 7, 2.81% at day 14, 26.96% at day 28 and
71.57% at day 56. First, we implement 2 classical approaches omitting or
an imputing arbitrary value to the censored data. We name M; the naive
approach, which omits all censored data. We then name M, the method
recommended by several authors (9; 6; 26); for each patient, the first data
below the LOQ is kept and imputed to LOQ/2, and then all the following
censored data are omitted. We use the standard SAEM algorithm to fit the
datasets for both the M; and M, methods. Second, we apply the extended
SAEM algorithm presented in Section 3; this gives us the maximum likelihood
(ML) estimates of the parameter 6 from the original dataset y°*.

The relative bias and RMSE obtained under the simulation model on
the uncensored datasets with the classical SAEM algorithm are presented in
Table 1 and referred as the “all data” estimates. These estimates have very
small bias (<0.5% for the fixed effects, <5% for the variance parameters).
The RMSE is really satisfactory for the fixed effects (<13%) and the variance
parameters (<30%).

The relative bias and RMSE obtained on the censored datasets are pre-
sented in Table 1. Three of the fixed effects are estimated with bias by the
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M, method, especially In Ay (23%). The M; method reduces the bias for
all the fixed effects but In A still has a larger bias (10.5%) than before the
censor. The bias of the variance parameters is increased with both the M;
and M, methods, especially for w} and o2 (47% and 98% for wj and 10% and
440% of bias for o2 respectively). In contrast with these 2 methods, the ex-
tended SAEM algorithm provides estimates of all the parameters with small
bias. The M; method gives a satisfactory RMSE except for Ay (11%) and w?
(56%). The M, method increases all the RMSE, especially for w? (113%) and
0? (453.2%). The RMSE is satisfactory with the extended SAEM algorithm.

Every dataset is almost censored at days 28 or 56 during the second decay
phase of the viral load decrease. This finding explains that the parameter
estimates corresponding to this second decay rate (In Ay and its variance w?)
are the most affected by the censoring process. However, even with 71% of
censoring at day 56, the bias and RMSE of the extended SAEM algorithm
almost reach the uncensored dataset benchmark. This accuracy is also illus-
trated in Figure 3, which presents the distribution of the second decay rate
parameters estimates (In Ay and In w?) for the 4 methods from the 1000 repli-
cations. This figure again points out the bad properties of the M; and M,
methods, and reemphasizes that the extended SAEM algorithm reaches the
exactness level of the estimation method applied to the uncensored datasets.
The difference in the other parameters distributions between the 4 methods
are similar.

The M; method provides estimates that are less biased than the M,
method for all parameters. This finding can be explained by the design used
for the simulation. The number of uncensored measurements is large enough
to estimate quite accurately all the parameter by omitting all the censored
data. Contrary to the M; method, which considers a partial dataset from
the original dataset, the My method is based on a modified partial dataset.
Because the modification affects the data measured during the second decay,
the parameter estimates of this second decay rate (In Ay and its variance w?)
are noticeably biased.

4.3 Application to group comparison

We consider that the subjects of each simulated trial belong to 2 different
treatment groups of equal size (i.e. 20 subjects per group). We performed a
Wald test and Likelihood ratio test (LRT) to test a difference between the
treatment groups on the viral load decrease, especially on the first viral decay
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Figure 3: Boxplot of the second decay rate parameter estimates (In Ay and
In w?) for the 4 methods on the 1000 replications: the all-data method, the
My and M5 methods, and ML, the extended SAEM algorithm.

rate, In\;, as proposed by Ding and Wu (6). We apply these tests using
SAEM on the uncensored datasets and the extended SAEM algorithm on
the censored datasets and evaluate their type I errors. We do not evaluate
the type I errors obtained with the M; and M, methods on the censored
datasets because the previous simulation study already illustrates their bad
properties.

Let G; = 0 denote a control treatment group subject and G; = 1 an
experiment treatment group subject. In this example, the vector of covariates
X, is (1, G;). Let 8 denote the treatment effect parameter on In);.

In )\11‘ =In /\1 + BGZ

In this case, the matrix of fixed effects is

_ hlPl IHPQ 111)\1 111)\2
N 0 0 6] 0 '

We test by LRT or Wald test the hypothesis that the 2 treatments are
equal, Hy: {f = 0}, versus the alternative hypothesis H;: {# # 0}. Be-
cause the likelihood function is differentiable for every 6 and the Hy is locally
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equivalent to a linear space, the LRT statistic is asymptotically chi-squared
distributed. We thus compare the 2(L; — Lg) statistic with a 1 degree of
freedom x? distribution, where Ly and L; are the log-likelihoods evaluated
by importance sampling under Hy and H;, respectively. The importance
sampling procedure is implemented by simulating a sample of size 5000 of
the individual parameters ¢; with the Gaussian approximation of the poste-
rior distribution, using estimates of the individual posterior mean E(¢;|y?")

1
and the posterior variance Var(¢;|y2*

2%%) evaluated by the empirical mean and
variance of the ¢; simulated by the SAEM algorithm during the last 500
iterations.

For the Wald test, the information Fisher matrix, whose inverse ma-
trix’s diagonal corresponds to the variance of the parameter estimates, is
estimated by a stochastic approximation procedure during the iteration of
the SAEM algorithm. We estimate the parameter ﬁ and its standard error
SE(() under Hy. Under the hypothesis that likelihood is twice continuously
differentiable for every 6, the Wald statistic is asymptotically chi-squared
distributed. Therefore, we compare the statistic 42/SFE%(3) with a y? dis-
tribution. For both tests, the type I error is estimated by the proportion of
trials for which Hy is rejected as these datasets are simulated without any
treatment effect.

The type I error of the Wald test is 4% for the classical SAEM algorithm
on the uncensored datasets, and 5.9% for the LRT. We find similar results
on the left-censored datasets using the extended SAEM algorithm. The type
I error of the Wald test and the LRT are 4.1% and 5.4%, respectively using
this algorithm. These again illustrate the good statistical properties of this
extended SAEM algorithm.

5 Application to the Trianon (ANRSS81) trial

We illustrate the extended SAEM algorithm on viral load data from the clin-
ical trial TRIANON supported by the French Agence National de Recherche
sur le Sida (ANRS). In this study, 144 patients infected with HIV-1, who
were randomized into 2 treatment groups, undergo treatment for 72 weeks:
71 patients receive treatment A (lamivudine, d4T and indinavir) and 73 pa-
tients treatment B (nevirapine, d4T and indinavir). Viral load is measured
at weeks 4 and 8 and every 8 weeks thereafter up through week 72. The
HIV RNA assay used in this study has a limit of detection of 20 cp/ml. The
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comparison of the log reduction of the viral load from baseline to week 72
between the 2 groups with use of a standard statistical approach involving
intention to treat shows treatment A to be superior, although the authors
expected a superiority of the 3-class regimen (treatment B). See Launay et
al. (27) for a more complete description of the study design and results. The
data are presented in Figure 4.

log viral load (cp/ml)

0 2 4 6 8 10 12 14 16 18
time (week)

Figure 4: Observed individual viral load decreases in the 2 groups of patients
of the TRIANON trial, with the predicted mean curves obtained with the
extended SAEM algorithm in the 2 groups: (A), group A observations; (+),
group B observations; plain line, group A prediction; dashed line, group B
prediction; dotted line, LOQ level.

This new analysis of TRIANON data aims to evaluate the treatment
effects on the evolution of the initial viral load decrease. We use the bi-
exponential model presented in section 4 to fit the log;q viral load measure-
ments until week 16. There are 64 (out of 275) and 65 (out of 281) observa-
tions, respectively, below the LOQ in group A and group B. We compare the
extended SAEM algorithm with the usual M method, the one recommended
by Ding and Wu (6) to handle left-censored data. For both methods, we ana-
lyze the model under the null hypothesis (i.e. without treatment effect). We
analyze then the 3 alternative hypotheses proposed by Ding and Wu: AH;:
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{ﬁh 7é 0}7 AH2: {ﬁh 7é O} and AH3: {ﬁ)q 7é 0 5)\2 7é 0} In group B, /6/\1
and [3,, are treatment effects added to In\; and In), in group A

In )\li = In )\1 + ﬁ,\l Gl and
InXy; = InXy+ By,Gj,

where G; = 0 denotes a group A subject and G; = 1 a group B subject. We
use the one-dimensional Wald test to assess the AH; and AH, alternative
hypotheses. We use a bi-dimensional Wald test for the two-dimensional vec-
tor B = (B, Br,) to assess the AH3 hypothesis. We use the LRT to test all
the nested models.

Using the M, method, the log-likelihoods are estimated at -617.24, -
617.18, -617.0 and -616.92 under Hy, AH;, AH; and AHjs, respectively. None
of the 4 LRT is significant at 5%, and we find the same conclusions using
the Wald test. With the extended SAEM algorithm, the log-likelihoods are
estimated at -472.11, -467.59, -467.28 and -466.09 under Hy, AH;, AH, and
AHj, respectively. The LRT are significant at 5%, except for the test of AH,
vs AH3. We find similar results using the Wald tests. Unsurprisingly, the
likelihoods are not of the same order with both methods because they come
from datasets with different numbers of observations: with the M, method,
the left-censored data are omitted except for the first ones; with the ex-
tended SAEM algorithm, all the left-censored data are kept. The population
parameter estimates (and their standard errors) of the final model under AH,
for the extended SAEM algorithm are InP;=10.8 (0.05), InP3=6.39 (0.17),
In\;=-1.30 (0.02), InX\y=-3.18 (0.05), (3,,=-0.277 (0.08), w?=0.106 (0.03),
w3=2.76 (0.46), w3=0.012 (0.01), w3=0.059 (0.02), and ¢*=0.38 (0.03). Fig-
ure 4 presents the curves predicted by this model, overlaid on the data. The
censored data are plotted at the value LOQ. The predicted curves are below
the LOQ at week 16 as the extended SAEM algorithm handles the censored
data.

In conclusion, we find a significant difference between treatments using
the extended SAEM algorithm but not with the recommended M, method.
The superiority of the treatment A (), < 0) is in concordance with the
previous analysis of the TRIANON dataset (27). In addition, we are able to
describe the evolution of the viral load and the treatments’ effects. In our
example, we find a trend for a faster viral load decrease under treatment A
in the second phase.
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6 Discussion

To analyse longitudinal data with left-censored responses, we propose a
maximum likelihood estimation method that may be preferred over meth-
ods classically used with NLMEM. We extend the SAEM algorithm de-
veloped by Kuhn and Lavielle (19) and the monolix 1.1 Matlab function
(http://mahery.math.u-psud.fr/~lavielle/monolix) by including in the sim-
ulation step of the SAEM algorithm a simulation of the left-censored data
with the right-truncated Gaussian distribution using an accept-reject algo-
rithm proposed by Robert (24). This extended SAEM algorithm is available
on the same web address. At the same time, the convergence of the algo-
rithm is monitored by graphical criterion. An automatic implementation of a
stopping criterion to optimize both the iterations number and the stochastic
approximation step will be considered in the next extension.

We apply this extended SAEM algorithm to model the HIV viral load
decrease. The simulation study illustrates the accuracy of our approach. We
show that the bias and RMSE obtained by the extended SAEM algorithm
are highly satisfactory for all parameters. They almost reach the benchmark
obtained before censoring the datasets, although for the last observation time,
72% of the observations are below the LOQ. We consider 2 classical methods
obtained either by omitting the data points below the limit or by imputing
half the LOQ to left-censored data. We show that the bias and RMSE
obtained by the extended SAEM algorithm are much reduced compared to
these 2 approaches.

The analysis of the TRIANON dataset also demonstrates the ability of
the extended SAEM algorithm to detect differences between 2 treatment
groups. This example illustrates the necessity to handle carefully the left-
censored data, as the usual approach fails to detect statistical difference
between treatment groups. The bi-exponential model that we use is deduced
from a differential equation model proposed by Perelson et al. (1) describing
the global HIV dynamics with both the viral load decrease and the CD4*
increase under treatment. Ding and Wu (6) show that this differential system
has an analytic solution under the assumption that the non-infected CD4*
cells concentration is constant. Because this assumption is not valid after
several week’s treatment, the authors recommend using this model only dur-
ing the first weeks after beginning a treatment, before any rebound of the
viral load due to multiple virus mutations. Thus, we consider only the first
weeks of the HIV dynamics of TRIANON data. After several weeks, the dif-
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ferential system has no more analytical solution. The exact SAEM algorithm
could also be extended to this case but is out of the scope of this paper.

To take into account the censored-data problem with NLMEM, Wu (7; 17)
proposes MCEM algorithms. In his first paper, he proposes a MCEM with
an M-step based on the linearization of the model, leading to an approximate
maximum likelihood estimation method. In the second paper, he proposes
an exact MCEM. However, he emphasizes computational problems, such as
slow or even no convergence, especially when the dimension of the random
effects is not small. Because the main problem of the MCEM is the simu-
lation of large independent samples of the random effects at each iteration,
Wu proposes complex sampling methods for the E-step. As an alternative,
he also proposes an approximate MCEM, based on the linearization of the
model for both the E- and M- steps, leading again to an approximate maxi-
mum likelihood estimation method. To avoid both the linearization step and
the computational problem, the SAEM algorithm is a more adapted tool to
estimate models with missing or non-observed data such as random effects or
censored observations. Indeed, only one realization of the random effects has
to be simulated at each iteration, sidestepping the computational problem
of the E-step of the MCEM. The extended SAEM requires more iterations
to reach the convergence than the standard SAEM, because of the inclusion
of a more complex Gibbs algorithm. However, the extended SAEM is still
less time consuming than the MCEM. As an example, Wu uses the same bi-
exponential HIV dynamic model in his simulation study (i.e. a model with a
random effect vector of size p = 4). Wu explains that it takes about 1 hour
for the exact MCEM algorithm to converge, whereas the extended SAEM
algorithm takes about 120 s to converge. The extended SAEM, which is a
true maximum likelihood estimation method, is about 10 times faster than
the approximate MCEM algorithm proposed by Wu (17). Wu proposes a
PX-EM (28) version of its MCEM, which converges faster. The extended
SAEM could also be combined with the PX-EM, gaining a similar rate of
convergence. The method proposed by Jacqmin-Gadda et al. (5) for censored
data analysed with linear mixed models could also be extended to the non-
linear case. It would be interesting to compare these 2 exacts ML estimation
methods.

We only focus on the left-censored data problem in the context of log viral
load observations, but SAEM can be extended to other missing processes such
as missing covariates, which Wu (17) includes in his MCEM. This requires
making distribution assumptions for the incompletely observed covariates,
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conditional on the completely observed covariates. This problem is beyond
the scope of this article, but it may be solved by a highly similar approach.

In conclusion, the extended SAEM algorithm combines the statistical
properties of an exact method together with computational efficiency. We
thus recommend the use of this method in NLMEM with left-censored data.
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