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Abstract— Local mean-field models (MFMs) describe 
regional brain activities by some connected differential 
equations. In an overall view, constituting variables of these 
differential equations can be divided to very fast, fast and slow 
variables. In this article we propose a method that can be used 
to determine role of a slow variable in behavior of MFMs. Very 
fast variables can be adiabatically removed from the equations. 
Isoclines of fast and slow variables and their corresponding 
vector field can provide valuable information about model 
behavior and role of the slow variable in it. The vector field of 
our interested MFM that is an enhanced MFM designed 
specially for general anesthesia, is a 3D field (one slow and two 
fast variables) and it is not so convenient for visually inspecting 
the role of the slow variable in this model. To afford this 
problem we design a 2D (planar) vector filed that only 
considers the slow variable and one of the fast variables.  

I. INTRODUCTION 
eveloping better methods for determining depth of 
anesthesia (DOA) requires good  understanding about 

brain functions during general anesthesia. Mean filed  
models (MFM) because of their remarkable properties of 
handling thousands of  similar neurons in one population are 
one of the best candidates to study brain  functions and 
activities during anesthesia [1], [2]. 

Recently we have proposed an enhanced  version of Bojak 
MFM by adding a slow modulatory mechanism of neural 
firing rate  in it [3]. This mechanism was added to Bojak 
model based on some real neuro-physiological experiments 
[4],[5]. Here, we show how the role of fast and slow 
variables  in our enhanced MFM (EMFM) can be 
investigated. To do this, first of all we briefly introduce our 
EMFM and then  adiabatically simplify the model to have 
only two fast (inhibitory and excitatory  membrane 
potentials) and one slow variables. Then we obtain isoclines 
of the slow variable and excitatory  membrane potential that 
is assumed to be proportional to EEG signal. To be able to 
investigate on the  role of slow and fast variables from 
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waking to deep anesthesia, we sketch the vector field of 
these variables. Since we have two fast variables  and one 
slow variable, the vector field would be three-dimensional.  
Here, we have proposed a method that combines the two  fast 
variables into one variable. This enables us to study the role 
of  variables of the model by a two-dimensional vector field 
that is sketched on  the isoclines plane. 

This method was used to investigate the role  of slow 
modulatory variable in our EMFM when a typical anesthetic 
drug concentration is  changed from zero to a certain amount 
that produces a very deep anesthesia.  Investigations show 
that the slow variable can generate a bi-stable neural firing. 
This bi-stability that occurs in delta frequency range (1-4Hz) 
is the main reason that brain delta rhythms can be recorded 
on scalp with high amplitudes much greater than those in 
alpha or beta rhythms during sleep or deep anesthesia.  

II. BASICS OF OUR ENHANCED MEAN-FIELD MODEL  
Our EMFM has been designed based on Bojak model [2]. 

Figure 1 illustrates a schematic diagram of the basic and 
enhanced MFM. In EMFM, brain is considered as a 
homogeneous media, so its activities are studied by identical 
macrocolumns. Macrocolumns are consisted of two neuronal 
populations, excitatory and inhibitory. Each macrocolumn is 
represented by 9 connected differential equations and it 
would be the whole differential equations of the model in 
homogeneous case. These equations have been brought 
briefly below (see [3] and [2] for more details): 
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Equation (1) expresses mean membrane potentials of 
inhibitory and excitatory populations by flowing currents to 
and from an RC circuit. Voltage sources of this RC circuit 
are: leakage ( )rest

k kh h− , excitatory synapses 

( ) ( )ek k ek eh I hψ and inhibitory synapses ( ) ( )ik k ik ih I hψ . jkI is 

the voltage response of population j  to k -type spike rate 
when it is in resting potential. ( )jk khψ is used as a 
compensation factor for resting potential. Equation (2) 
describes post synaptic potential of population j  by 

,j jG γ and jγ% in a second order differential equation. k -type 
spike rate is composed of three kinds of sources: locally in a 
same macrocolumn ( jS ), distant from other macrocolumns 

( jkΦ ) and subcortical input noises ( jkp ). jkN β  is the number 

of connections from population j  to population k  within a 

macrocolumn and jkNα is the same quantity but it is used for 

inter connections of macrocolumns. 
In EMFM, there is also a slow mechanism that modulates 

the excitatory firing rate. This slow mechanism is used as a 
simple representation of many kinds of slow intrinsic ionic 
channels on neural membranes that have not been 
considered directly in the RC circuit of neural cells. 
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Figure 1: Schematic diagram of the inter/intra connections in the 
macrocolumns. The switch determines which model has been selected, 
‘basic’ or ‘enhanced’. 

 
We have assumed that a slow process that is called s  

modulates the firing rate of excitatory population. s  follows 
s∞  based on the first order differential equation in (5). sτ  is 
a high value time constant and s∞  is a descending sigmoid 
function of the excitatory membrane potential and represents 
the tendency of a cell to be in up state. It is meaningful when 
the potential is decreased there is more tendency for neural 
cells to be in up state. 

In the basic MFM, excitatory firing rate eS  is mainly 
represented by excitatory mean potential eh (see Eq. (7)) but 

in EMFM, s  also influences the value of eS . 
Equation (6) has gathered two different terms of firing 

rates, ( )e eS h  and max
eS . Normalized weighted of these two 

terms determines the overall firing rate of excitatory 
populations. Weighting coefficients 1( )F s  and 2 ( )F s  are 
anti-symmetric sigmoid functions of s . B  which lays 
between zero and one is a free parameter that determines the 
weighting balance of each firing term. Fθ  and Fg  
respectively determine the turning point and slope of 
sigmoid functions. Fg  must take a value that is smaller than 
zero but Fθ takes a value between zero and one. 

Administration of anesthetic drugs varies the shape of 
PSP functions. The effect of anesthetic drug concentration 
can be applied on EMFM by declaring ,j jγ γ%  and jG  as 
functions of drug concentration. These parameters mainly 
determine PSP by equation (2). Generally a Hill equation is 
used to express this parameter as functions of drug 
concentration [2]. 

III. MODEL SOLUTIONS 

A. Equilibrium solution of EMFM 
The first step in evaluating the behavior of model in 

different drug concentration is to find the equilibrium 
solution of the nine connected differential equations. 
Equilibrium values of the mean excitatory and inhibitory 
membrane potentials ( 0 0,e ih h ) must be found numerically. 
Setting all /d dt and noise terms to zero we obtain below 
equations: 
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Assuming that eh  is an independent variable, we can 
obtain an expression for ( )i iS h as a function of eh using (9), 
(11) and (12) (where k e≡ ). We call this expression 
ˆ ( )i eS h . Using the definition of inhibitory inverse sigmoid 

function we can obtain îh  from ˆ ( )i eS h . In fact, using this 

procedure we can obtain an expression for ˆ ( )i eh h . By 

substituting ih  with îh  in (10) and (12) (where k i≡ ) we 

can obtain êh which is an estimation of eh . This algorithm 
can be implemented for a definite range of eh  values to find 
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their corresponding êh  values. Roots of ˆ 0e eh h− =  and 

their corresponding îh would be the solutions of excitatory 

and inhibitory membrane potentials that are called 0 0,e ih h .  

B. Isoclines of slow mechanism and excitatory membrane 
potential  
One of the best ways to study the influence of slow 

variable s  on the network in different anesthetic 
concentration is to sketch / 0ds dt = and / 0edh dt =  
isoclines in a same plane ( es h⇔  isoclines) [6]. In the case 
of stable equilibrium state, s  is reached its target value s∞  
but in an unstable mode s  and s∞  may have different 
values due to the high value of sτ . This can produce some 
special network activities that can be investigated and 
interpreted by isoclines. 

To sketch es h⇔  isoclines any variables in the nine 
connected differential equations is set to its equilibrium 
value. Suppose that from (5) a set of ŝ  values that 
correspond to a given set of stationary eh  values, have been 
calculated and plotted versus eh . For each point on the 
obtained curve we have / 0ds dt = , so this curve is called 

/ 0ds dt =  isocline (simply isocline #1). Reversely it is 

possible to obtain êh  as a function of equilibrium s  values 
to obtain / 0edh dt =  isocline (isocline #2). To do this, s  is 
altered between zero to one (its valid range) with a desired 
step size (e.g. 0.05) and corresponding with each s  value in 
this range, equilibrium values of eh  are obtained using the 
root search method described previously. Now, if we 
properly superimpose these two isoclines as it has shown in 
Figure 2, intersections of them indicates the equilibrium 
solutions of the differential equations that were found 
previously because / / 0eds dt dh dt= =  for the intersected 
points. Any other point on isoclines plane may have positive 
or negative values of /ds dt  and /edh dt . These values are 
represented by a vector field on the isoclines plane. Vectors 
lengths and directions show how and to what extend, s  and 

eh  are changed if the network state is positioned on them, 
so they can predict the trajectories. It is assumed that 
comparing to s , eh  and ih , other variables in the model are 
enough fast and reach their steady state rapidly. This 
assumption reduces our model to a three-dimensional model; 
as a result we can trace the trajectories by a 3D vector field. 

IV. VECTOR FIELD AND NETWORK BEHAVIOR 
In this section we show how we can obtain a two-

dimensional vector field on the isoclines plane that can 
predict the behavior of the numerically simulated signals 
(trajectories). For this purpose, we illustrate two es h⇔  
isoclines plane corresponding with two different drug 

concentrations that exhibit different dynamics. Using this 
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Figure 2: A typical / 0edh dt = and / 0ds dt = isoclines and six candidate 

planar vectors that are originated from ( 0.3, 1 )es h mV•= ±  
 

method, we will able to see how the slow mechanism can 
aperiodically switch neural state between up and down when 
drug concentration is increased. 

A. Obtaining the 2D vector field on isoclines plane 
Figure 3A illustrates es h⇔  isoclines (dashed and dotted 

lines) and a 5sec superimposed trace of ( )s t  and ( )eh t  
signals when drug concentration is set to zero. Time course 
of ( )eh t  signal has been illustrated in Figure 3B. Arrows in 
Figure 3A represent the planar vector field for some parts of 
isoclines plane. For each s  between 0 and 1 in 0.05 steps, 

these vectors have been calculated in e eh h• + Δ  where 

{ 1,1}ehΔ = − mV and eh•  are red dots on isocline #2. 
Calculating vertical component of these vectors (in s  

direction) requires inserting e eh h• + Δ  in (5) and obtaining 
/ds dt  from this equation. Horizontal components are 

obtained from (1) where k e≡ . But since in this equation, 
ih also influences the value of /edh dt , to be able to study 

the response of the model by vector field, we have to obtain 
a 3D vector field ( /edh dt , /idh dt , /ds dt ) that makes the 
problem a little more complicated. Instead of using a 3D 
vector field, we have proposed a method that reduces the 
vector dimensions to two. To do this, for each point located 
in ( s , e eh h• + Δ ) on isoclines plane, we tested some i ih h• + Δ  
values where ihΔ  was changed from -1mv to +1mv. Our 
experiments show that a 2D vector field ( /edh dt  , /ds dt ) 
properly traces the simulated signals in the isoclines plane if 

i eh hκΔ ≅ Δ  where /i eh hκ • •= . Although using this method 
vectors are coarsely obtained, it is possible to match all 
traces of simulated signals with vector field directions. This 
approximation can be used as a useful method for tuning the 
model parameters and investigating on the role of a specific 
variable in the model.  

B. Studying the role of the slow mechanism in EMFM 
Using the 2D vector field 
In all of our simulations we used Euler method with 
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0.1ms step size and a down sampler to generate 10-second 
signals having 400Hz sampling frequency. 

Here we show the planar vector field is able to predict the 
model behavior before performing any numerical 
simulation. It can be inferred from isocline #2 of Figure 3A 
that regardless the value of s  there is typically one 
equilibrium solution about high eh  potentials that expresses 
being in the up state. Even for s ’s that have three different 
equilibrium points on isocline #2 ( 0 0.4s< < ), the highest 
potential equilibrium point (up state) has the most 
occurrence probability. This is evident from the vector near 
the three equilibrium points. Upward short length vectors 
about the lowest potential equilibrium point (down state) 
indicate that there is not enough attraction to this point and 
the simulated trace cannot reach to this point because there 
is much distance between the equilibrium point in up and 
down states. eh  cannot also be settled in the middle 
equilibrium point because the vectors about this point go 
away from it (unstable point). As a result, eh and other 
model parameters are settled in their up state position. 
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seconds of ( )s t  and ( )eh t trajectories for zero drug concentration (A). The 

time course of ( )eh t  trajectory (B). 
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Figure 4: The same description of Figure 3 except that anesthetic drug 
concentration has been increased to 0.3 mM. 

 

In Figure 4A the network balance has been changed 
toward more inhibition by increasing anesthetic drug 
concentration. It can be inferred from this figure that the 
right branch of isocline #2 has moved a little to more 
negative potentials also the U-turn has moved to higher s  
values. Note that s  positively modulates the excitatory 
firing rate in (6); so moving the U-turn in positive 
s direction indicates that the balance has moved to inhibition 
because more extra modulation of excitatory firing rate is 

required to have only one equilibrium point on isocline #2 
(this happens when 0.55s ≈ ). It means for an identical s  
value that isocline #2 of zero drug concentration just has one 
equilibrium point; here it may have three equilibrium points. 
One of the effects of shifting the right branch of the isocline 
#2 and reducing its distance with the middle unstable branch 
is that the probability function of being about right 
equilibrium branch is spread. As a result, simulated trace of 
s  and eh  will be more distributed about the up state 
equilibrium point and sometimes reaches to the area of 
middle branch and may pass this unstable barrier and switch 
the whole network from up to down state. This increases s∞  
rapidly but s  that is slowly following s∞ , is increased 
gradually. This is the reason why the simulated trace in 
Figure 4A reaches to the U-turn tip while passing the 
unstable barrier. s  value in the U-turn tip is a critical value 
that enough modulatory forces exist in the network; so the 
network can not be settled in down state any longer and 
must be switched back to up state. Reaching to this critical 
value conveys an abrupt increasing of excitatory and 
inhibitory membrane potential and decreasing of s∞ . After 
this switching, s  is gradually decreased until another jump 
from up to down state happens. 

V. CONCLUSION 
In the case where a MFM contains many state variables it 

is not feasible to study the behavior of the MFM by 
considering all of its state variables; so rational model order 
reduction is the first step that must be done. In our EMFM, 
we adiabatically reduced the model order from nine to three. 
One of them was a slow variable ( )s  and others were faster 
variables ( , )e ih h ; so a 3D vector field was necessary for 
investigation on the role of slow and fast variables. This 3D 
vector field was reduced to a 2D vector field by combining 
the two fast variables. We could validate this method by 
observing that the 2D vector field can be matched with the 
trajectories of numerically simulated s  and eh  signals. 
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