Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition

Abstract : The main contribution of our approach is to apply the Hilbert-Huang Transform (which consists of two parts: (a) Empirical Mode Decomposition (EMD), and (b) the Hilbert spectral analysis) to texture analysis. The EMD is locally adaptive and suitable for analysis of non-linear or non-stationary processes. This one-dimensional decomposition technique extracts a finite number of oscillatory components or ldquowell-behavedrdquo AM-FM functions, called Intrinsic Mode Function (IMF), directly from the data. Firstly, we extend the EMD to 2D-data (i.e. images), the so called bidimensional EMD (BEMD), the process being called 2D-sifting process. The 2D-sifting process is performed in two steps: extrema detection by neighboring window or morphological operators and surface interpolation by radial basis functions or multigrid B-splines. Secondly, we analyse each 2D-IMF obtained by BEMD by studying local properties (amplitude, phase, isotropy and orientation) extracted from the monogenic signal of each one of them. The monogenic signal is a 2D-generalization of the analytic signal, where the Riesz Transform replaces the Hilbert Transform. The performance of this texture analysis method, using the BEMD and Riesz Transform, is demonstrated with both synthetic and natural images.
Type de document :
Article dans une revue
Machine Vision and Applications, Springer Verlag, 2005, 16 (3), pp.0932-8092. 〈10.1007/s00138-004-0170-5〉
Liste complète des métadonnées

https://www.hal.inserm.fr/inserm-00177472
Contributeur : Jean-Claude Nunes <>
Soumis le : vendredi 12 octobre 2007 - 16:15:12
Dernière modification le : mercredi 16 mai 2018 - 11:23:08

Lien texte intégral

Identifiants

Collections

Citation

Jean-Claude Nunes, Steve Guyot, Eric Deléchelle. Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition. Machine Vision and Applications, Springer Verlag, 2005, 16 (3), pp.0932-8092. 〈10.1007/s00138-004-0170-5〉. 〈inserm-00177472〉

Partager

Métriques

Consultations de la notice

316