N. Aggelopoulos and H. Meissl, Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions, The Journal of Physiology, vol.18, issue.1, pp.211-222, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-1-00211.x

A. Barnard, S. Hattar, M. Hankins, and R. Lucas, Melanopsin Regulates Visual Processing in the Mouse Retina, Current Biology, vol.16, issue.4, pp.389-395, 2006.
DOI : 10.1016/j.cub.2005.12.045

D. Baylor and A. Hodgkin, Changes in time scale and sensitivity in turtle photoreceptors, The Journal of Physiology, vol.242, issue.3, pp.729-758, 1974.
DOI : 10.1113/jphysiol.1974.sp010732

M. Belenky, C. Smeraski, I. Provencio, P. Sollars, and G. Pickard, Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses, The Journal of Comparative Neurology, vol.460, issue.3, pp.380-393, 2003.
DOI : 10.1002/cne.10652

F. Dunn and M. Takao, Phototransduction in ganglion-cell photoreceptors. Pflugers Arch Phototransduction by retinal ganglion cells that set the circadian clock, Berson DM Berson DM Science, vol.295, pp.1070-1073, 2002.

S. Bloomfield and R. Dacheux, Rod Vision: Pathways and Processing in the Mammalian Retina, Progress in Retinal and Eye Research, vol.20, issue.3, pp.351-384, 2001.
DOI : 10.1016/S1350-9462(00)00031-8

Z. Boulos, M. Macchi, T. Houpt, and M. Terman, Photic Entrainment in Hamsters: Effects of Simulated Twilights and Nest Box Availability, Journal of Biological Rhythms, vol.55, issue.3, pp.216-233, 1996.
DOI : 10.1177/074873049601100304

D. Dacey, H. Liao, B. Peterson, F. Robinson, V. Smith et al., Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN, Nature, vol.341, issue.36, pp.749-754, 2005.
DOI : 10.1523/JNEUROSCI.3828-03.2004

O. Dkhissi-benyahya, C. Gronfier, D. Vanssay, W. Flamant, F. Cooper et al., Modeling the Role of Mid-Wavelength Cones in Circadian Responses to Light, Neuron, vol.53, issue.5, pp.677-687, 2007.
DOI : 10.1016/j.neuron.2007.02.005

URL : https://hal.archives-ouvertes.fr/inserm-00135926

S. Ebihara and K. Tsuji, Entrainment of the circadian activity rhythm to the light cycle: Effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse, Physiology & Behavior, vol.24, issue.3, pp.523-527, 1980.
DOI : 10.1016/0031-9384(80)90246-2

F. Ebling, The role of glutamate in the photic regulation of the suprachiasmatic nucleus, Progress in Neurobiology, vol.50, issue.2-3, pp.109-132, 1996.
DOI : 10.1016/S0301-0082(96)00032-9

G. Fain, H. Matthews, M. Cornwall, and Y. Koutalos, Adaptation in vertebrate photoreceptors, Physiol Rev, vol.81, pp.117-151, 2001.

M. Freedman, R. Lucas, B. Soni, M. Von-schantz, M. Munoz et al., Regulation of Mammalian Circadian Behavior by Non-rod, Non-cone, Ocular Photoreceptors, Science, vol.284, issue.5413, pp.502-504, 1999.
DOI : 10.1126/science.284.5413.502

J. Gingrich and R. Hen, Commentary: The broken mouse: the role of development, plasticity and environment in the interpretation of phenotypic changes in knockout mice, Current Opinion in Neurobiology, vol.10, issue.1, pp.146-152, 2000.
DOI : 10.1016/S0959-4388(99)00061-6

. Gronfier, K. Wright, . Jr, R. Kronauer, and C. Czeisler, Entrainment of the human circadian pacemaker to longer-than-24-h days, Proceedings of the National Academy of Sciences, vol.104, issue.21, pp.9081-9086, 2007.
DOI : 10.1073/pnas.0702835104

URL : https://hal.archives-ouvertes.fr/inserm-00149594

G. Groos and R. Mason, Maintained discharge of rat suprachiasmatic neurons at different adaptation levels, Neuroscience Letters, vol.8, issue.1, pp.59-64, 1978.
DOI : 10.1016/0304-3940(78)90098-8

G. Groos and R. Mason, The visual properties of rat and cat suprachiasmatic neurones, Journal of Comparative Physiology ? A, vol.3, issue.4, pp.349-356, 1980.
DOI : 10.1007/BF00657651

S. Hattar, M. Kumar, A. Park, P. Tong, J. Tung et al., Central projections of melanopsin-expressing retinal ganglion cells in the mouse, The Journal of Comparative Neurology, vol.132, issue.3, pp.326-349, 2006.
DOI : 10.1002/cne.20970

S. Hattar, R. Lucas, N. Mrosovsky, S. Thompson, R. Douglas et al., Melanopsin and rod???cone photoreceptive systems account for all major accessory visual functions in mice, Nature, vol.424, issue.6944, pp.75-81, 2003.
DOI : 10.1038/nature01761

M. Hebert, S. Martin, C. Lee, and C. Eastman, The effects of prior light history on the suppression of melatonin by light in humans, Journal of Pineal Research, vol.57, issue.4, pp.198-203, 2002.
DOI : 10.1034/j.1600-079X.2002.01885.x

M. Isoldi, M. Rollag, A. Castrucci, and I. Provencio, Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin, Proceedings of the National Academy of Sciences, vol.102, issue.4, pp.1217-1221, 2005.
DOI : 10.1073/pnas.0409252102

A. Khammanivong and D. Nelson, Light Pulses Suppress Responsiveness within the Mouse Photic Entrainment Pathway, Journal of Biological Rhythms, vol.20, issue.12, pp.393-405, 2000.
DOI : 10.1177/074873040001500505

K. Knoblauch and S. Shevell, Relating cone signals to color appearance: Failure of monotonicity in yellow/blue, Visual Neuroscience, vol.18, issue.06, pp.901-906, 2001.
DOI : 10.1017/S0952523801186062

R. Marc and B. Jones, Retinal Remodeling in Inherited Photoreceptor Degenerations, Molecular Neurobiology, vol.28, issue.2, pp.139-147, 2003.
DOI : 10.1385/MN:28:2:139

J. Meijer, G. Groos, and B. Rusak, Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster, Brain Research, vol.382, issue.1, pp.109-118, 1986.
DOI : 10.1016/0006-8993(86)90117-4

Z. Melyan, E. Tarttelin, J. Bellingham, R. Lucas, and M. Hankins, Addition of human melanopsin renders mammalian cells photoresponsive, Nature, vol.29, issue.7027, pp.741-745, 2005.
DOI : 10.1126/science.1105121

L. Morin, J. Blanchard, and I. Provencio, Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: Bifurcation and melanopsin immunoreactivity, The Journal of Comparative Neurology, vol.504, issue.3, pp.401-416, 2003.
DOI : 10.1002/cne.10881

N. Mrosovsky, Contribution of classic photoreceptors to entrainment, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, vol.189, pp.69-73, 2003.

L. Mure, C. Rieux, S. Hattar, and H. Cooper, Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo, Journal of Biological Rhythms, vol.178, issue.5, pp.411-424, 2007.
DOI : 10.1038/nature03387

URL : https://hal.archives-ouvertes.fr/inserm-00174269

J. Nathan, R. Reh, I. Ankoudinova, G. Ankoudinova, B. Chang et al., Scotopic and Photopic Visual Thresholds and Spatial and Temporal Discrimination Evaluated by Behavior of Mice in a Water Maze, Photochem Photobiol, 2006.

S. Nayak, T. Jegla, and S. Panda, Role of a novel photopigment, melanopsin, in behavioral adaptation to light, Cellular and Molecular Life Sciences, vol.64, issue.2, pp.144-154, 2007.
DOI : 10.1007/s00018-006-5581-1

D. Nelson and J. Takahashi, Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus)., The Journal of Physiology, vol.439, issue.1, pp.115-145, 1991.
DOI : 10.1113/jphysiol.1991.sp018660

S. Panda, S. Nayak, B. Campo, J. Walker, J. Hogenesch et al., Illumination of the Melanopsin Signaling Pathway, Science, vol.307, issue.5709, pp.600-604, 2005.
DOI : 10.1126/science.1105121

S. Panda, T. Sato, A. Castrucci, M. Rollag, W. Degrip et al., Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting, Science, vol.298, issue.5601, pp.2213-2216, 2002.
DOI : 10.1126/science.1076848

S. Panda, I. Provencio, D. Tu, S. Pires, M. Rollag et al., Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice, Science, vol.301, issue.5632, pp.525-527, 2003.
DOI : 10.1126/science.1086179

J. Perez-leon, E. Warren, C. Allen, D. Robinson, L. Brown et al., Synaptic inputs to retinal ganglion cells that set the circadian clock, European Journal of Neuroscience, vol.17, issue.4, pp.1117-1123, 2006.
DOI : 10.1111/j.1460-9568.2006.04999.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435212

I. Provencio, M. Rollag, and A. Castrucci, Anatomy Photoreceptive net in the mammalian retina, Nature, vol.415, issue.6871, p.493, 2002.
DOI : 10.1038/415493a

M. Pu, Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus, The Journal of Comparative Neurology, vol.414, issue.2, pp.267-274, 1999.
DOI : 10.1002/(SICI)1096-9861(19991115)414:2<267::AID-CNE9>3.3.CO;2-W

M. Pu, Physiological Response Properties of Cat Retinal Ganglion Cells Projecting to Suprachiasmatic Nucleus, Journal of Biological Rhythms, vol.282, issue.5393, pp.31-36, 2000.
DOI : 10.1177/074873040001500104

M. Pu, L. Xu, and H. Zhang, Visual Response Properties of Retinal Ganglion Cells in the Royal College of Surgeons Dystrophic Rat, Investigative Opthalmology & Visual Science, vol.47, issue.8, pp.3579-3585, 2006.
DOI : 10.1167/iovs.05-1450

M. Rea, Photic Entrainment of Orcadian Rhythms in rodents, Chronobiology International, vol.656, issue.5, pp.395-423, 1998.
DOI : 10.1016/0361-9230(87)90176-6

N. Ruby, T. Brennan, X. Xie, V. Cao, P. Franken et al., Role of Melanopsin in Circadian Responses to Light, Science, vol.298, issue.5601, pp.2211-2213, 2002.
DOI : 10.1126/science.1076701

K. Sakamoto, C. Liu, and G. Tosini, Classical Photoreceptors Regulate Melanopsin mRNA Levels in the Rat Retina, Journal of Neuroscience, vol.24, issue.43, pp.9693-9697, 2004.
DOI : 10.1523/JNEUROSCI.2556-04.2004

S. Sekaran, R. Foster, R. Lucas, and M. Hankins, Calcium Imaging Reveals a Network of Intrinsically Light-Sensitive Inner-Retinal Neurons, Current Biology, vol.13, issue.15, pp.1290-1298, 2003.
DOI : 10.1016/S0960-9822(03)00510-4

M. Semo, S. Peirson, D. Lupi, R. Lucas, G. Jeffery et al., ) mice, European Journal of Neuroscience, vol.9, issue.9, pp.1793-1801, 2003.
DOI : 10.1046/j.1460-9568.2003.02616.x

K. Smith, M. Schoen, and C. Czeisler, Adaptation of Human Pineal Melatonin Suppression by Recent Photic History, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.7, pp.3610-3614, 2004.
DOI : 10.1210/jc.2003-032100

P. Sollars, C. Smeraski, J. Kaufman, M. Ogilvie, I. Provencio et al., Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus, Visual Neuroscience, vol.20, issue.6, pp.601-610, 2003.
DOI : 10.1017/S0952523803206027

D. Tu, D. Zhang, J. Demas, E. Slutsky, I. Provencio et al., Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells, Neuron, vol.48, issue.6, pp.987-999, 2005.
DOI : 10.1016/j.neuron.2005.09.031

B. Volgyi, M. Deans, D. Paul, and S. Bloomfield, Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina, Journal of Neuroscience, vol.24, issue.49, pp.11182-11192, 2004.
DOI : 10.1523/JNEUROSCI.3096-04.2004

E. Warren, C. Allen, R. Brown, and R. B. , Intrinsic light responses of retinal ganglion cells projecting to the circadian system, European Journal of Neuroscience, vol.71, issue.9, pp.1727-1762, 2003.
DOI : 10.1046/j.1460-9568.2003.02594.x

H. Wassle, Parallel processing in the mammalian retina, Nature Reviews Neuroscience, vol.45, issue.36, pp.747-757, 2004.
DOI : 10.1002/cne.10323

K. Wong, F. Dunn, and D. Berson, Photoreceptor Adaptation in Intrinsically Photosensitive Retinal Ganglion Cells, Neuron, vol.48, issue.6, pp.1001-1010, 2005.
DOI : 10.1016/j.neuron.2005.11.016

URL : http://doi.org/10.1016/j.neuron.2005.11.016