K. Baier, S. Nicklisch, and W. Lockau, Evidence for Propeptide-Assisted Folding of the Calcium-Dependent Protease of the Cyanobacterium Anabaena, European Journal of Biochemistry, vol.88, issue.3, pp.750-755, 1996.
DOI : 10.1038/339483a0

A. Beaumont, M. J. O-'donohue, N. Paredes, N. Rousselet, M. Assicot et al., The Role of Histidine 231 in Thermolysin-like Enzymes.: A SITE-DIRECTED MUTAGENESIS STUDY, Journal of Biological Chemistry, vol.270, issue.28, pp.16803-16808, 1995.
DOI : 10.1074/jbc.270.28.16803

A. Beaumont, Â. Fournie, M. Noble, F. Maldonado, R. Roques et al., The chemistry and pharmacology of cell surface peptidase inhibitors, Cell Surface Peptidases in Health and Disease, pp.59-78, 1997.

T. Benchetrit, Â. Fournie, M. C. Roques, and B. P. , Relationship between the inhibitory potencies of thiorphan and retrothiorphan enantiomers on thermolysin and neutral endopeptidase 24.11 and their interactions with the thermolysin active site by computer modelling, Biochemical and Biophysical Research Communications, vol.147, issue.3, pp.1034-1040, 1987.
DOI : 10.1016/S0006-291X(87)80174-2

P. Braun, J. Tommassen, and A. Fillana, Role of the propeptide in folding and secretion of elastatse of Pseudomonas arnaginosa, Mol Pharmacol, vol.19, pp.297-306, 1996.

J. Eder and A. R. Fersht, Pro-sequence-assisted protein folding, Molecular Microbiology, vol.88, issue.4, pp.609-614, 1995.
DOI : 10.1038/339483a0

V. G. Eijsink, G. Vriend, B. Van-der-burg, G. Venema, and B. K. Stulp, neutral protease, "Protein Engineering, Design and Selection", vol.4, issue.1, pp.99-104, 1990.
DOI : 10.1093/protein/4.1.99

K. Inouye, N. Mazda, and M. Kubo, Need for Aromatic Residue at Position 115 for Proteolytic Activity Found by Site-directed Mutagenesis of Tryptophan 115 in Thermolysin, Bioscience, Biotechnology, and Biochemistry, vol.62, issue.4, pp.798-800, 1998.
DOI : 10.1271/bbb.62.798

S. Kawamoto, Y. Shibano, J. Fukushima, N. Ishii, K. Morihara et al., Site-directed mutagenesis of Glu-141 and His-223 in Pseudomonas aeruginosa elastase: catalytic activity, processing, and protective activity of the elastase against Pseudomonas infection, Infect. Immun, vol.61, pp.1400-1405, 1993.

W. N. Lipscomb, È. Stra, and N. Ter, Recent Advances in Zinc Enzymology, Chemical Reviews, vol.96, issue.7, pp.2375-2433, 1996.
DOI : 10.1021/cr950042j

S. A. Litster, D. R. Wetmore, R. S. Roche, and P. W. Codding, Thermolysin-Like Neutral Protease at 2.8 ?? Resolution, Acta Crystallographica Section D Biological Crystallography, vol.52, issue.3, pp.543-550, 1996.
DOI : 10.1107/S0907444995016684

C. Marie-claire, E. Ruffet, S. Antonczak, A. Beaumont, M. O-'donohue et al., Evidence by Site-Directed Mutagenesis That Arginine 203 of Thermolysin and Arginine 717 of Neprilysin (Neutral Endopeptidase) Play Equivalent Critical Roles in Substrate Hydrolysis and Inhibitor Binding, Biochemistry, vol.36, issue.45, pp.13938-13945, 1997.
DOI : 10.1021/bi9712495

URL : https://hal.archives-ouvertes.fr/inserm-00171023

C. Marie-claire, B. P. Roques, and A. Beaumont, Intramolecular Processing of Prothermolysin, Journal of Biological Chemistry, vol.273, issue.10, pp.5697-5701, 1998.
DOI : 10.1074/jbc.273.10.5697

URL : https://hal.archives-ouvertes.fr/inserm-00145189

B. W. Matthews, Structural basis of the action of thermolysin and related zinc peptidases, Accounts of Chemical Research, vol.21, issue.9, pp.333-340, 1988.
DOI : 10.1021/ar00153a003

K. Mciver, E. Kessler, and D. E. Ohman, Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase., Journal of Bacteriology, vol.173, issue.24, pp.7781-7789, 1991.
DOI : 10.1128/jb.173.24.7781-7789.1991

W. L. Mock and M. Aksamawti, Binding to thermolysin of phenolate-containing inhibitors necessitates a revised mechanism of catalysis, Biochemical Journal, vol.302, issue.1, pp.57-68, 1994.
DOI : 10.1042/bj3020057

O. Donohue, M. J. Beaumont, and A. , The roles of the pro-sequence of thermolysin in enzyme inhibition and folding in vitro, J. Biol. Chem, vol.271, pp.26477-26481, 1996.

O. Donohue, M. J. Roques, B. P. Beaumont, and A. , Rokko coding for the thermostable metalloprotease thermolysin, Biochemical Journal, vol.300, issue.2, pp.599-603, 1994.
DOI : 10.1042/bj3000599

N. Rawlings and A. Barrett, [13] Evolutionary families of metallopeptidases, Methods Enzymol, vol.290, pp.205-218, 1995.
DOI : 10.1016/0076-6879(95)48015-3

B. P. Roques, F. Noble, Â. Dauge, V. Fournie, Â. et al., Neutral endopeptidase 24.11. Structure, inhibition, and experimental and clinical pharmacology, Pharmacol. Rev, vol.45, pp.87-146, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00314275

F. Sambrook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

U. Shinde and M. Inouye, Propeptide-Mediated Folding in Subtilisin: The Intramolecular Chaperone Concept, Advan. Exp. Med. Biol, vol.379, pp.147-154, 1996.
DOI : 10.1007/978-1-4613-0319-0_16

J. L. Silen and D. A. Agard, The ??lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo, Nature, vol.341, issue.6241, pp.462-464, 1989.
DOI : 10.1038/341462a0

M. Simonen and I. Palva, Protein secretion in Bacillus species, Microbiol. Rev, vol.57, pp.109-137, 1993.

M. Takagi and T. Imanaka, Role of the pre-pro-region of neutral protease in secretion in Bacillus subtilis, Journal of Fermentation and Bioengineering, vol.67, issue.2, pp.71-76, 1989.
DOI : 10.1016/0922-338X(89)90182-7

S. Toma, S. Campagnoli, E. De-gregoris, R. Gianna, L. Margarit et al., neutral protease, "Protein Engineering, Design and Selection", vol.2, issue.5, pp.359-364, 1989.
DOI : 10.1093/protein/2.5.359

D. R. Wetmore, S. L. Wong, and R. S. Roche, The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus, Molecular Microbiology, vol.160, issue.12, pp.1593-1604, 1992.
DOI : 10.1038/339483a0