M. Grauso, Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing, Genetics, vol.160, pp.1519-1533, 2002.

K. Chamaon, : the ??-subunit D??3 and the ??-type subunit ARD co-assemble within the same receptor complex, FEBS Letters, vol.54, issue.3, pp.189-192, 2000.
DOI : 10.1016/S0014-5793(00)02057-3

K. Chamaon, Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex, Journal of Neurochemistry, vol.80, issue.1, p.149, 2002.
DOI : 10.1046/j.0022-3042.2001.00685.x

S. J. Lansdell and N. S. Millar, Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras, Journal of Neurochemistry, vol.90, issue.2, pp.479-489, 2004.
DOI : 10.1111/j.1471-4159.2004.02499.x

A. B. Elgoyhen, ??10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells, Proceedings of the National Academy of Sciences, vol.288, issue.5475, p.3501, 2001.
DOI : 10.1126/science.288.5475.2366

M. I. Lioudyno, The ??9/??10-Containing Nicotinic ACh Receptor Is Directly Modulated by Opioid Peptides, Endomorphin-1, and Dynorphin B, Proposed Efferent Cotransmitters in the Inner Ear, Molecular and Cellular Neuroscience, vol.20, issue.4, pp.695-711, 2002.
DOI : 10.1006/mcne.2002.1150

M. Lecchi, Functional properties of neuronal nicotinic acetylcholine receptors in the chick retina during development, European Journal of Neuroscience, vol.18, issue.11, pp.3182-3188, 2005.
DOI : 10.1111/j.1460-9568.2005.04150.x

R. L. Papke, Rhesus monkey ??7 nicotinic acetylcholine receptors: Comparisons to human ??7 receptors expressed in Xenopus oocytes, European Journal of Pharmacology, vol.524, issue.1-3, pp.11-18, 2005.
DOI : 10.1016/j.ejphar.2005.08.043

J. Marshall, Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor, EMBO J, vol.9, pp.4391-4398, 1990.

M. Amar, A nicotinic acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes, Neuroscience Letters, vol.199, issue.2, pp.107-110, 1995.
DOI : 10.1016/0304-3940(95)12033-Z

L. M. Valor, Transcriptional Regulation by Activation and Repression Elements Located at the 5'-Noncoding Region of the Human ??9 Nicotinic Receptor Subunit Gene, Journal of Biological Chemistry, vol.278, issue.39, p.37249, 2003.
DOI : 10.1074/jbc.M307043200

S. Halevi, The C.elegansric-3 gene is required for maturation of nicotinic acetylcholine receptors, The EMBO Journal, vol.21, issue.5, pp.1012-1020, 2002.
DOI : 10.1093/emboj/21.5.1012

S. Halevi, Conservation within the RIC-3 Gene Family: EFFECTORS OF MAMMALIAN NICOTINIC ACETYLCHOLINE RECEPTOR EXPRESSION, Journal of Biological Chemistry, vol.278, issue.36, 2003.
DOI : 10.1074/jbc.M300170200

E. M. Jeanclos, The Chaperone Protein 14-3-3eta Interacts with the Nicotinic Acetylcholine Receptor alpha 4 Subunit. EVIDENCE FOR A DYNAMIC ROLE IN SUBUNIT STABILIZATION, Journal of Biological Chemistry, vol.276, issue.30, pp.28281-28290, 2001.
DOI : 10.1074/jbc.M011549200

S. Marchand, Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts, 2002.

S. T. Ngo, Neuregulin potentiates agrin-induced acetylcholine receptor clustering in myotubes, NeuroReport, vol.15, issue.16, pp.2501-2505, 2004.
DOI : 10.1097/00001756-200411150-00014

M. E. Williams, Ric-3 promotes functional expression of the nicotinic acetylcholine receptor alpha7 subunit in mammalian cells, 2005.

S. J. Lansdell, RIC-3 Enhances Functional Expression of Multiple Nicotinic Acetylcholine Receptor Subtypes in Mammalian Cells, Molecular Pharmacology, vol.68, issue.5, pp.1431-1438, 2005.
DOI : 10.1124/mol.105.017459

M. Ihara, Oocytes, Bioscience, Biotechnology, and Biochemistry, vol.27, issue.1, pp.761-763, 2004.
DOI : 10.1038/sj.bjp.0704848

M. Ihara, Diverse actions of neonicotinoids on chicken ??7, ??4??2 and Drosophila???chicken SAD??2 and ALS??2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes, Neuropharmacology, vol.45, issue.1, pp.133-144, 2003.
DOI : 10.1016/S0028-3908(03)00134-5

M. Shimomura, Roles of loop C and the loop B???C interval of the nicotinic receptor ?? subunit in its selective interactions with imidacloprid in insects, Neuroscience Letters, vol.363, issue.3, pp.195-198, 2004.
DOI : 10.1016/j.neulet.2003.12.115

M. Shimomura, Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila D??2 subunit, which contributes to neonicotinoid sensitivity, Neuroscience Letters, vol.385, issue.2, pp.168-172, 2005.
DOI : 10.1016/j.neulet.2005.05.014

L. Zewen, Selection for imidacloprid resistance inNilaparvata lugens: cross-resistance patterns and possible mechanisms, Pest Management Science, vol.12, issue.12, pp.1355-1359, 2003.
DOI : 10.1002/ps.768

Z. Liu, From The Cover: A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper), Proceedings of the National Academy of Sciences, vol.42, issue.25, pp.8420-8425, 2005.
DOI : 10.1021/bi0300130

C. Bass, Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae), Insect Biochemistry and Molecular Biology, vol.36, issue.1, pp.86-96, 2006.
DOI : 10.1016/j.ibmb.2005.11.003

M. Shimomura, Role in the Selectivity of Neonicotinoids of Insect-Specific Basic Residues in Loop D of the Nicotinic Acetylcholine Receptor Agonist Binding Site, Molecular Pharmacology, vol.70, issue.4, pp.1255-1263, 2006.
DOI : 10.1124/mol.106.026815

A. K. Jones, The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae, Genomics, vol.85, issue.2, pp.176-187, 2005.
DOI : 10.1016/j.ygeno.2004.09.001

W. Marszalec, Desensitization of nicotine acetylcholine receptors: Modulation by kinase activation and phosphatase inhibition, European Journal of Pharmacology, vol.514, issue.2-3, pp.83-90, 2005.
DOI : 10.1016/j.ejphar.2005.03.017

S. J. Butt and R. M. Pitman, Indirect phosphorylation-dependent modulation of postsynaptic nicotinic acetylcholine responses by 5-hydroxytryptamine, European Journal of Neuroscience, vol.39, issue.5, pp.1181-1188, 2005.
DOI : 10.1111/j.1460-9568.2005.03947.x

V. L. Salgado and R. Saar, Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons, Journal of Insect Physiology, vol.50, issue.10, pp.867-879, 2004.
DOI : 10.1016/j.jinsphys.2004.07.007

R. Courjaret and B. Lapied, Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons), Mol. Pharmacol, vol.60, pp.80-91, 2001.

R. Courjaret, Two distinct calcium-sensitive and insensitive PKC up-and down-regulate an alpha-bungarotoxinresistant nAChR1 in insect neurosecretory cells, 2003.

R. M. Zayas, Nicotinic-acetylcholine receptors are functionally coupled to the nitric oxide/cGMP-pathway in insect neurons, Journal of Neurochemistry, vol.419, issue.2, pp.421-431, 2002.
DOI : 10.1046/j.1471-4159.2002.01147.x

H. Nishiwaki, Correlations of the electrophysiological activity of neonicotinoids with their binding and insecticidal activities, Pest Management Science, vol.55, issue.9, pp.1023-1030, 2003.
DOI : 10.1002/ps.729

R. Klink, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, 2001.

A. K. Jones, Sg??1, a novel locust (Schistocerca gregaria) non-?? nicotinic acetylcholine receptor-like subunit with homology to the Drosophila melanogaster D??1 subunit, Invertebrate Neuroscience, vol.82, issue.3-4, pp.147-155, 2005.
DOI : 10.1007/s10158-005-0007-6

R. Nauen and I. Denholm, Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects, Archives of Insect Biochemistry and Physiology, vol.93, issue.2, pp.200-215, 2005.
DOI : 10.1002/arch.20043

N. Rauch and R. Nauen, Identification of biochemical markers linked to neonicotinoid cross resistance inBemisia tabaci (Hemiptera: Aleyrodidae), Archives of Insect Biochemistry and Physiology, vol.75, issue.4, pp.165-176, 2003.
DOI : 10.1002/arch.10114

S. J. Butt and R. M. Pitman, ) motoneuron, European Journal of Neuroscience, vol.87, issue.3, pp.429-438, 2002.
DOI : 10.1046/j.0953-816x.2001.01863.x

P. Deglise, The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells, Neuroscience Letters, vol.321, issue.1-2, pp.13-16, 2002.
DOI : 10.1016/S0304-3940(01)02400-4

D. G. Wustenberg and B. Grunewald, Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured Kenyon cells of the honeybee, Apis mellifera, Journal of Comparative Physiology A, vol.52, issue.10, pp.807-821, 2004.
DOI : 10.1007/s00359-004-0530-7

R. Nauen, Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae), Pest Management Science, vol.57, issue.7, pp.577-586, 2001.
DOI : 10.1002/ps.331.abs

G. S. Barbara, Acetylcholine, GABA and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera, Journal of Comparative Physiology A, vol.310, issue.9, pp.823-836, 2005.
DOI : 10.1007/s00359-005-0007-3

URL : https://hal.archives-ouvertes.fr/hal-00093185

H. Su, O. Dowd, and D. K. , Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxinsensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors, J. Neurosci, vol.23, pp.9246-9253, 2003.

J. Rohrbough and K. Broadie, Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae, 2002.

C. Wegener, Acetylcholine Increases Intracellular Ca2+ Via Nicotinic Receptors in Cultured PDF-Containing Clock Neurons of Drosophila, Journal of Neurophysiology, vol.91, issue.2, pp.912-923, 2004.
DOI : 10.1152/jn.00678.2003

D. Fickbohm and B. A. Trimmer, Antisense inhibition of neuronal nicotinic receptors in the tobacco-feeding insect,Manduca sexta, Archives of Insect Biochemistry and Physiology, vol.509, issue.4, pp.172-185, 2003.
DOI : 10.1002/arch.10100

A. Vermehren, The nicotinic ?? subunit MARA1 is necessary for cholinergic evoked calcium transients in Manduca neurons, Neuroscience Letters, vol.313, issue.3, pp.113-116, 2001.
DOI : 10.1016/S0304-3940(01)02228-5

R. Nauen, Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants, Pesticide Biochemistry and Physiology, vol.76, issue.2, pp.55-69, 2003.
DOI : 10.1016/S0048-3575(03)00065-8

C. Jackson, Pharmacological properties of nicotinic acetylcholine receptors in isolated Locusta migratoria neurones, Microscopy Research and Technique, vol.3, issue.4, pp.249-255, 2002.
DOI : 10.1002/jemt.10028

A. K. Jones, The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera, Genome Research, vol.16, issue.11, pp.1422-1430, 2006.
DOI : 10.1101/gr.4549206