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Abstract 

 

Identifying genes involved in the control of adherens junction 

(AJ) remodelling is essential to understanding epithelial 

morphogenesis. During follicular epithelium development in 

Drosophila, the main body follicular cells (MBFC) are displaced 

towards the oocyte, and become columnar. Concomitantly, the 

stretched cells (StC) become squamous and flatten around the nurse 

cells. By monitoring the expression of E Cadherin and Armadillo, I 

have discovered that the rate of AJ disassembly between the StC is 

affected in follicles with somatic clones mutant for fringe or Delta and 

Serrate. This results in abnormal StC flattening and delayed MBFC 

displacement. Additionally, the accumulation of the Myosin II heavy 

chain, Zipper, is delayed at the AJ that require disassembly. 

Together, my results demonstrate that the N pathway controls AJ 

remodelling between the StC, and that this role is crucial for the 

timing of MBFC displacement and StC flattening. This provides new 

evidence that Notch, besides playing a key role in cell differentiation, 

also controls cell morphogenesis. 
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Introduction 

 Epithelial cell morphogenesis is a key step in the formation and 

the development of multicellular organisms. Morphogenetic 

processes involving cell shape change or cell displacement inside an 

epithelial sheet depend on the flexibility of the cohesiveness between 

epithelial cells, which is ensured by several adhesion systems, such 

as the adherens junctions. Elucidating the regulation of the 

expression of molecules involved in cellular adhesion is thus crucial 

to increasing our knowledge of epithelial cell morphogenesis. The 

somatic follicular cells of Drosophila ovarian follicles provide a simple 

system for studying epithelial morphogenesis. Initially, these cells 

have a cuboidal shape and form a monolayer around each 16-cell 

germline cyst. Throughout oogenesis, they progressively differentiate 

into distinct populations that adopt a squamous or columnar shape 

and undergo various morphogenetic movements. Thus, studying cell 

morphogenesis of the follicular epithelium should further our 

understanding of how cell shape change and cell displacement 

proceed in an epithelial sheet. 

When a follicle leaves the germarium (stage 1), it consists of a 

germ cyst of 16 cells (1 oocyte and 15 nurse cells (NC)) surrounded 

by a monolayer of follicular cells (Fig. 1) (Spradling, 1993). Three 

different subpopulations of somatic cells can be identified: the polar 

cells, the stalk cells and the follicular cells (Fig. 1A). Two pairs of 

polar cells are present at each extremity of the follicle, while the 

interfollicular cells are organized into a stalk of 4 to 6 cells that 

intercalate between adjacent follicles. These two populations play a 

critical role in follicle formation (Grammont and Irvine, 2001; Lopez-
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Schier and St Johnston, 2001; Torres et al., 2003). The differentiation 

of the follicular epithelium starts with the specification of the terminal 

follicular cells versus the main body follicular cells (MBFC) 

(Gonzalez-Reyes et al., 1995; Roth et al., 1995). At the anterior pole, 

the terminal cells give rise to the border cells, the stretched cells 

(StC) and the centripetal cells (Fig. 1A). These three populations 

cannot be recognized prior to stage 9 or 10, when specific markers or 

genes are expressed and several morphogenetic features become 

apparent (Dobens and Raftery, 2000; Horne-Badovinac and Bilder, 

2005; Spradling, 1993). Of relevance to this work are the 

morphogenetic processes that concern the MBFC and the StC: at 

stage 9, the MBFC displace towards the oocyte and take on a 

columnar shape when they make contact with it, while the StC flatten 

around the NC to maintain a continuous epithelium. This flattening 

starts from the most anterior cells and extends progressively to the 

cells located more posteriorly. This process can be monitored by the 

expression of the MA33 and decapentaplegic (dpp) enhancer trap 

lines and of the Eyes absent protein (Eya) (See materials and 

methods). At the end of the process of StC flattening, most of the 

nuclei of the fifty or so stretched cells are positioned in the interstitial 

gaps between the NC (Fig. 1B) (Spradling, 1993). The rearrangement 

of the MBFC into columnar cells, their displacement towards the 

oocyte and the flattening of the StC are morphogenetic processes 

that are poorly understood and the genes involved almost entirely 

unknown. 

The Notch signalling pathway is required at several stages of 

oogenesis. First, the Notch (N) receptor is required for polar cell 
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differentiation in the germarium. This entails the germline production 

of the ligand Delta (Dl) and the specific expression of the Notch 

modulator Fringe (Fng) in the polar cell precursors (Grammont and 

Irvine, 2001; Lopez-Schier and St Johnston, 2001; Torres et al., 

2003). Second, the Notch signalling pathway is required to induce a 

transition from mitotic cycle to endocycle in the follicular cells at stage 

6 of oogenesis. This role is also dependent on the germline 

production of Dl, but is fng-independent (Deng et al., 2001). Third, 

stage 10 follicles mutant for N display defects in the differentiation of 

the border, stretched and centripetal cells as well as abnormal 

migration (Dobens et al., 2005; Gonzalez-Reyes and St Johnston, 

1998; Keller Larkin et al., 1999; Zhao et al., 2000). Although the first 

two requirements of N have been analysed in detail, the third is 

poorly defined, since it has only been demonstrated using a N 

thermo-sensitive allele. Thus, the precise role of N in the 

differentiation of the border, stretched and centripetal cells and in 

their morphogenesis remains an unresolved question. 

Here I have taken a different approach to address this question 

by analysing the role of fng during StC flattening and MBFC 

displacement, as its expression pattern from stage 7 to stage 10A 

suggested that it could be involved. Indeed, during these stages, fng 

mRNA is present in all the follicular cells, except the outer border 

cells (Grammont and Irvine, 2001; Zhao et al., 2000). Somatic mutant 

clones for a fng null allele (fng13) have been generated and analysis 

of the phenotypes induced by the mutant clones leads to the 

conclusion that the N pathway functions in a fng-dependant manner 

to control adherens junction remodelling between the StC and that 
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this activity is essential for proper StC flattening and for the timing of 

MBFC displacement. 
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Results 

fringe is required in the StC and the anterior MBFC to control 
StC number and the timing of MBFC displacement  

Since fng is required for the differentiation of polar cells, which 

in turn promote terminal cell differentiation (Beccari et al., 2002; 

Grammont and Irvine, 2002; Silver and Montell, 2001; Xi et al., 2003), 

only follicles with somatic fng13 clones that do not include the anterior 

and posterior polar cells were analysed. Only the role of fng in the 

MBFC displacement and StC flattening will be analysed in detail here. 

In the phenotypic description, references to the MBFC include the 

cells destined to become centripetal cells since the two cell types are 

indistinguishable until stage 10 (Fig. 1A). When fng13 clones 

encompass some StC and some MBFC, an excess of cells is 

observed over the NC in follicles at stage 10A or older (75%, n=60). 

As described in the next two paragraphs, these supernumerary cells 

are either MBFC or StC.  

In stage 10A follicles, many of the supernumerary cells appear 

in clusters (Fig. 2A). These clusters present three traits. First, they 

display a cell density more characteristic of the MBFC population 

than of the StC population. Second, they are always immediately 

adjacent to the MBFC population. Third, most of their component 

cells do not express MA33 or Eya, except the ones that are at the 

anterior border of the cluster (Fig. 2B), indicating that the majority of 

these cells do not have a stretched fate. Together, these data 

suggest that most of the supernumerary cells within these clusters 

are MBFC that did not fully complete their displacement. In 

agreement with that, these clusters are never observed over the NC 
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at later stages, indicating that they do eventually surround the oocyte 

(Fig. 2C). Thus, these observations show that fng is required in the 

StC and in the MBFC to allow the posterior displacement of the 

MBFC to be fully completed by the end of stage 9. However, since 

this displacement does still occur, other mechanisms must act in 

parallel to fng to control it. 

In stage 10B follicles, supernumerary cells, although no longer 

arranged in clusters, are still observed over the NC when a large 

clone encompasses some MBFC and some StC (80%, n=25). These 

supernumerary cells express every StC marker such as MA33 (Fig. 

2D), Eya (Fig. 5A), dpp-lacZ and the Dpp pathway read-out Dad-lacZ, 

the latter also being expressed in the StC during their flattening (see 

Materials and methods). Thus, all the supernumerary cells that are 

observed over the NC in stage 10B follicles have a StC fate. As a 

consequence, in such follicles, the number of StC increases from 

about 50 to between 70 and 110 cells (Fig. 2D). These extra StC 

could either have arisen from extra divisions of the fng13 cells or from 

MBFC that did not get displaced and instead adopted a stretched 

fate. If these were abnormally proliferating follicular cells, a much 

higher density of cells would be expected in the part of the mutant 

clone overlying the NC, as has been shown for mutant alleles of 

genes required to stop follicular cell mitotic division (Deng et al., 

2001). Moreover, no expression of Cyclin B and Phospho-Histone3 

has been detected in fng mutant clones after stage 6 of oogenesis 

(Deng et al., 2001; Grammont, unpublished data). Thus, these cells 

are most likely MBFC that did not reached the oocyte and 

differentiated as StC. In conclusion, the supernumerary cells 
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observed above the NC at stages 10A and 10B derive from an 

abnormal displacement of the MBFC. 

The penetrance and the expressivity of these phenotypes vary based 

on the type and the number of cells that are mutant. The penetrance 

is higher when the clones encompass both MBFC and StC than when 

they encompass only one of those cell types, showing that fng is 

required in both the StC and the MBFC. Nevertheless, when the 

clones encompass just MBFC, only clones in the anterior part of the 

MBFC population induce delayed displacement (Fig. 2E), while 

follicles with a large lateral and/or posterior clone do not (Grammont, 

unpublished data). This indicates that the requirement of fng is 

different within the MBFC population, with a higher requirement in the 

anterior cells in contact with the StC. On the other hand, the 

displacement of the MBFC is more delayed in regions where most of 

the StC are mutant than in regions where most of the StC are wild 

type  (WT), indicating that the StC play an essential role in MBFC 

displacement (Fig. 2F). Finally, MBFC delays are rarely (6%, n=30) 

observed in small clones (less than 10 cells) (Grammont, unpublished 

data), suggesting that the presence of WT cells around the mutant 

cells prevents it. Equally, some WT MBFC can be delayed when they 

are in the immediate proximity of a large clone (Fig. 2B, 5A). This 

suggests that the process of displacement for one MBFC depends on 

the ability of its neighbouring cells to be displaced, such that the 

displacement of the MBFC occurs in a coordinated manner all around 

the follicle, and not in a cell autonomous manner. In conclusion, fng is 

required in the StC and the anterior MBFC to direct StC number and 

to control the timing of MBFC displacement.  
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fringe is not required for StC differentiation 

It has been proposed that the displacement of the MBFC 

towards the oocyte is due to cell shape changes of the most posterior 

cells from cuboidal to columnar, with this change in form forcing their 

neighbouring anterior cells to move posteriorly (Horne-Badovinac and 

Bilder, 2005; Spradling, 1993). Because no MBFC displacement 

delay is observed in fng13 clones encompassing only posterior cells 

and because no defect in cell shape change has been detected in 

fng13 posterior cells, fng is not required to generate the force created 

by the posterior cells (henceforth referred to as the ‘pulling force’) 

(Grammont, unpublished data). In WT follicles, the MBFC 

displacement probably stops when the StC are unable to expand any 

further without compromising the integrity of the epithelium, implying 

that this displacement also depends on the ability of the cells to 

respond to the pulling force, for example by flattening. It is then likely 

that fng is involved in this response, since a delayed MBFC 

displacement is observed in most follicles with a fng13 clone 

encompassing StC and anterior MBFC.  

In fact, defective StC flattening and delayed MBFC 

displacement could arise from a physical inability to undergo 

morphogenetic processes or from an abnormal StC differentiation (Xi 

et al., 2003). Accordingly, an analysis of the expression of all known 

StC fate markers - the Eya protein and the MA33 and dpp-lacZ and 

Dad-lacZ enhancer-traps - has been undertaken in stage 9 follicles 

containing an anterior clone on one side of the follicle. This provides 

an internal reference, such that marker expression in mutant cells can 

be compared to WT cells located at the same anterior-posterior (A/P) 
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position. No noticeable difference in the expression of any of the 

markers was observed between WT and fng mutant StC (Fig. 3A, 3B, 

3C), indicating that the differentiation of the fng mutant StC is not 

delayed in comparison with the WT cells. Moreover, although the role 

of the Dpp pathway in StC fate determination is unknown, the correct 

expression of the Dad-lacZ enhancer trap in fng13 StC rules out the 

hypothesis that this pathway is not active in these cells (Fig. 3B). In 

conclusion, no significant alteration of StC identity is observed in fng 

mutant follicles. 

 

The Notch pathway controls the dynamics of AJ remodelling 

Since the delay in MBFC displacement in fng13 clones is not 

due to a delay in StC differentiation, it leaves open two possibilities: 

either that fng mutant StC are unable to flatten properly and/or that 

fng mutant MBFC cannot move posteriorly properly. One possible 

underlying cause that could explain both possibilities is a physical 

inability for the cells to change their shapes and/or to be displaced. 

Epithelial cell shape change and movement depends on adherens 

junction (AJ) remodelling. A detailed analysis of AJ remodelling was 

first carried out in WT stage 9 follicles because this is as of yet 

uncharacterised. Since the StC undergo the greatest cell shape 

changes within a follicle, it is reasonable to expect that any mutation 

that causes defects in cell shape changes by modifying the properties 

of AJ may manifest more dramatically in the StC than in any other cell 

types.  

Therefore, to simplify the study of the role of fng, I have chosen 

to focus on the AJ and their dynamics between the StC, by 
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monitoring the expression of E Cadherin (ECad) (Fig. 4) and the β-

catenin protein, Armadillo (Supplemental data S1). The following 

observations have been obtained from analysis of an mean of 15 

follicles of each stage. Throughout stage 9, a colocalisation between 

the two proteins is observed. In early stage 9 of oogenesis, a strong 

ECad expression is detected in all follicular cells, except the posterior 

cells. This expression displays the hexagonal shape of the follicular 

cells, indicating that AJ are present all around each cell close to their 

apical side (Fig. 4A). Due to the geometry of the cells, some AJ 

mediate contact between two cells, whilst others between three (Fig. 

4A). The orientations of the two-cell junctions are essentially either 

perpendicular or parallel to the A/P axis. During the process of 

flattening (mid stage 9), no ECad expression is detected at the three-

cell junctions that mediate contact between the flattened cells and the 

flattening cells (Fig. 4B). In contrast, ECad is still present at the three-

cell junctions that mediate contact between the flattening cells and 

the unflattened cells. Additionally, only a few spots of ECad are 

observed in the perpendicularly-oriented two-cell junctions between 

the flattened cells and the flattening cells whereas a strong ECad 

expression is still observed in those between the flattening cells and 

the unflattened cells (Fig. 4B). Distinct patterns are thus observed 

depending on the degree of flattening of the cells. In late stage 9, 

most of the AJ are no longer visible except for the ones that are 

parallel to the A/P axis (Fig. 4C). At stage 10A, these junctions are 

barely visible, but ECad starts to be accumulated very strongly in the 

part of the StC located in the intersticial gaps between NC. ECad is 

also detected weakly in the part of the StC overlying the NC (Fig. 4D). 
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At stage 10B, the AJ parallel to the A/P axis are no longer detected, 

but the ECad expression in the part of the StC overlying the NC 

increase, which permits the detection of the shape of the StC. This 

reveals that most of the StC are more elongated along the A/P axis 

than along the dorsal-ventral axis (Fig. 4E). Identical results for StC 

shape were also obtained by assaying α-Tubulin expression (Fig. 

4F). 

To summarise, ECad expression strongly increases just before 

the MBFC displacement and the StC flattening. In the StC undergoing 

flattening, the three-cell junctions disassemble first, promptly followed 

by all the two-cell junctions perpendicular to the A/P orientation and 

then the two-cell junctions parallel to the A/P orientation. This highly 

dynamic expression permits the monitoring of the flattening of the StC 

and of their shape once the flattening is completed. This ECad 

expression pattern shows that the process of flattening is coordinated 

all around the follicle, since it starts from the anteriormost row of cells 

and progresses posteriorly row by row. Finally, the dynamic of this 

pattern suggests that the order of disassembly of the AJ during stage 

9 dictates the direction of cell flattening, allowing the cells to spread 

and adopt an elongated shape along the A/P axis. 

 Next I compared ECad expression patterns in fng13 mutant 

StC to control WT StC located at the same A/P position within the 

follicle. At late stage 9, the three-cell junctions between WT cells are 

disassembled, whereas they are still intact in regions where most of 

the StC are mutant (77%, n=18) (Fig. 5A, arrows). The StC 

immediately posterior to these latter mutant StC, whether themselves 

WT or mutant (Fig. 5A, large arrow and arrowhead), display ECad 
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staining on all their edges, indicating that the process of AJ 

remodelling has not yet started in these cells. Finally, an abnormally 

high number of StC, as well as a delay in the MBFC displacement, 

are observed in the mutant region (77%, n=18). Similar results are 

obtained by monitoring the expression of Armadillo (75%, n=12) 

(Supplemental data S1).  

 Together, these observations show that fng is required for the 

AJ dynamics to occur properly during the StC flattening and, thus, 

that the MBFC displacement delays and the abnormally high number 

of StC observed in fng mutant follicles derive from a physical inability 

of the StC to flatten. ECad expression patterns still differ between 

mutant and WT regions in a stage 10A fng13 follicle (Supplemental 

data S2) but in late stage 10B follicles, the ECad expression pattern 

is almost identical between mutant and WT regions indicating that AJ 

remodelling is delayed, but not blocked, in fng13 clones (Grammont, 

unpublished data). In these follicles, when the majority of the StC are 

mutant, there are twice as many StC as in a WT follicle (Fig. 5B). 

Since the overall size of the NC compartment in follicles with many 

mutant StC is not substantially different than in WT, each StC likely 

covers less surface area than a WT (Compare 5B with 3F). Indeed, 

the mean surface area of StC in a WT follicle is 1526 ± 301 µm2 

(n=30), whereas the mean surface area of a StC in a follicle with a 

large fng13 clone is 804 ± 261µm2 (n=83; p< 0.0001). This shows that 

StC in fng mutant follicles flatten less than StC in WT follicles. In 

addition, no accumulation of ECad is observed in the part of the StC 

that are usually squeezed into the interstitial gaps between the NC, 

presumably because the StC are less flattened and their nuclei no 
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longer forced into these gaps. In contrast, a higher level of ECad is 

detected in the part of the StC overlying the NC (Compare Fig. 5B 

with 4E). This brighter ECad signal could derive from a higher 

expression level, but more likely reflects the fact that because the 

cells are smaller, their apical surface is reduced and ECad molecules 

are thus more concentrated. Staining for α-tubulin yields identical 

results (Fig. 5B’, 5B’’). In conclusion, fng is required for the proper 

flattening of the StC, which in turn controls the minimal number of 

cells that will adopt this fate.  

In order to address whether this role of fng is linked to an 

activity of the N pathway, I conducted a similar analysis with null 

alleles of Dl (Dlrev10) and Ser (SerRX106). This analysis shows that in 

stage 9 follicles with anterior clones doubly mutant for Dl and Ser, 

most of the three-cell junctions are still present in the mutant region, 

but disassembled in the WT region (91%, n=23) (Fig. 5C). 

Furthermore, an increased density of StC and a delayed MBFC 

displacement are observed in the mutant region (Fig. 5C). No defects 

have been observed for single Serrev2-11 clones (n=8) whereas single 

Dlrev10 clones yielded similar defects with a weaker expressivity to the 

double Dl Ser mutant clones (87%, n=15) (Grammont, unpublished 

data). In addition, as described for fng13 follicles, the appearance of 

StC markers occurs properly in the Dl Ser mutant StC (Grammont, 

unpublished data). Together, these data demonstrate that, while the 

Notch pathway appears not to effect StC identity, it does have a fng-

dependant role in remodelling their AJ, with Dl playing an essential 

role in the soma and Ser having an overlapping function.  
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A detailed analysis of the expression pattern of Notch and Delta 

during stage 9 reveals that these two proteins are strongly expressed 

in the flattened and in the flattening StC. In particular, a strong 

accumulation of N is detected at the disassembling three-cell 

junctions, suggesting that this expression corresponds to the role of N 

described here (Fig. 5D,E). Similarly, analyses of the expression 

patterns of some reporters for N activation show that they are more 

strongly expressed in the flattened and flattening StC than in the 

MBFC (Supplemental data S3). Thus the expression patterns of 

these markers indicate that the N pathway is transcriptionally active in 

the StC at stage 9. As a direct involvement of the canonical Notch 

pathway cannot be analysed (due to its requirement at earlier steps 

of oogenesis), I tested the effects of overexpressing Hairless (H), a 

repressor of N transcriptional activity, using a hs-H construct. In all 

stage 9 follicles overexpressing H (n=28), abnormal AJ remodelling is 

observed. In contrast to WT follicles, no AJ disassembly is detected 

between StC in early-mid stage 9 follicles overexpressing H 

(Compare Fig. 4B with Fig. 5F). Rather, this disassembly commences 

only in mid-late stage 9 follicles, after several rows of StC have 

differentiated (Fig. 5G - Supplemental data S3E). This indicates that 

the transcriptional activity of Notch plays a crucial role in controlling 

the dynamics of AJ disassembly between StC at stage 9 of 

oogenesis.  

Follicles expressing a constitutively activated form of Notch 

(Nact) were then analysed. Surprisingly, the overexpression of Nact 

in some stretched cells leads to an autonomous abnormal flattening 

of stretched cells and a delay in AJ remodelling (72%, n=20) 
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(Supplemental data S3). The shape of Nact-expressing cells remains 

cuboidal longer than the cells undergoing flattening that are located at 

the same position along the A/P axis (Fig. S3F). In parallel, the AJ 

remodelling is delayed in the Nact-expressing region in comparison to 

the WT region (Fig. S3G). This indicates that some N target genes 

are involved in the AJ remodelling. One could suggest that the loss or 

the gain of activity of the N pathway affects the expression of different 

target genes, or that the timing of N activation has to be controlled 

very precisely to allow proper AJ remodelling. 

 

The Notch pathway controls the localisation of Myosin II 

The chronology of AJ disassembly is essential for the StC 

flattening and the timing of the MBFC displacement. This chronology 

likely depends on local effectors at the cell junctions undergoing 

disruption. The myosin II heavy chain and regulatory light chain, 

encoded by the zipper (zip) and the spaghetti squash (sqh) genes 

respectively, are two effectors that have been shown to remodel cell 

junctions in a polarized manner (Bertet et al., 2004). To determine 

whether these two proteins are involved in junction disassembly 

during StC flattening, their expression patterns were determined in 

stage 9 follicles. A detailed analysis during stage 9 shows that Zipper 

is more strongly accumulated in some specific spots, which 

correspond to disassembling AJ. Indeed, depending on the degree of 

the flattening of the StC, Zip can be strongly accumulated along a 

lateral line that separates the flattened cells from the ones that are 

flattening (Fig. 6A). Some parts of this line of expression correspond 

to the edges of the StC that are oriented perpendicular to the A/P 
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axis. Anterior to this line, Zip is accumulated in StC, both in the 

vicinity of their nuclei, as well as along those edges that are parallel 

to the A/P axis. In some follicles, this line is not detected but instead, 

a strong accumulation is detected at the disassembling three-cell 

junctions that are between the row of flattening StC and the row of 

unflattened cells (Fig. 6B). A similar pattern of expression is observed 

with a Sqh-GFP fusion protein (Fig. 6C). Together, these 

observations suggest that these are good candidate proteins for the 

control of the chronology of AJ remodelling during StC flattening.  

To confirm this, Zip expression has been investigated in Dl Ser 

double mutant follicles. In such follicles, when the lateral line of Zip 

accumulation is observed in WT regions, it appears to be interrupted 

in regions containing mutant cells (Fig. 6D). Moreover, at the A/P 

position where Zip is accumulated at the disassembling three-cell 

junctions in WT regions, no accumulation is detected in mutant 

regions (Fig. 6E). Such accumulations are instead detected at 

disassembling three-cell junctions located more anteriorly. Hence, the 

delay in the AJ disassembly observed in Dlrev10 SerRX106 cells is 

coincident with the delay in the appearance of Zip accumulation at 

disassembling junctions. A similar delay is observed in fng13 cells 

(Grammont, unpublished data). Thus, the defects in StC flattening 

and MBFC displacement delay may be due to a lack of polarization of 

Zipper during cell junction disassembly.  

 

E Cadherin and Myosin II are required for StC flattening 
 As an impaired N pathway results in abnormal delay in AJ 

remodelling and modification of Zipper expression pattern during StC 
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flattening, it suggests a role for shg, zip and sqh during this process. 

In order to test this, somatic mutant clones for a shg null allele 

(shgR69) and for a sqh hypomorphic allele (sqh1) were induced. Stage 

9 follicles with shg mutant clones display a higher density of flattening 

StC in the mutant region than in WT (n=12) (Fig. 7A, 7A’, 7A’’). At 

stage 10, a delay in MBFC displacement is also detected in the 

mutant region (n=10) (Fig. 7B). Thus, as observed in follicles with fng 

and Dl/Ser mutant clones, the ability of the StC to flatten and the 

timing of MBFC displacement are impaired in shg mutant follicles. 

One might expect that the absence of shg would result in the loss of 

AJ and that StC flattening would occur faster and/or without any 

constraint. In light of this, the data from the shg clones could suggest 

that the cells are still adhesive. As another adhesion molecule, N 

Cadherin (NCad), can also be a component of AJ, its expression was 

investigated in such clones. In WT follicles, NCad is strongly 

expressed in all follicular cells from stage 1 to stage 6 (Fig. 7C). Its 

expression decreases during stage 7 and 8 to become almost 

undetectable at stage 9, with a weak expression in the follicular cells 

that surround the oocyte and in the StC (Fig. 7D). In stage 7-9 

follicles with shg mutant clones, a strong NCad expression is 

detected in the mutant cells. This over-expression is cell-autonomous 

in stage 7 follicles (n=11), but is restricted to the anterior part of the 

clones in stage 8 (n=9) and stage 9 follicles (75%, n=20) (Fig. 7A’’’, 

7A’’’’, Supplemental data S4). This over-expression of NCad is no 

longer detected at stage 10A (n=25) (Grammont, unpublished data). 

Thus, the absence of ECad is compensated by the up-regulation of 

NCad from stage 7 to stage 10 and leads to delayed StC flattening 
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and MBFC displacement, indicating that the levels of ECad and NCad 

expression during mid oogenesis are interrelated and that the 

regulation of ECad expression is an important key for StC flattening. 

The requirement of Myosin II cannot be tested directly by using 

null alleles of zip or sqh, as mutant cells will be unable to divide. Thus 

a hypomorphic allele of sqh was used and only small clones can be 

analysed. In stage 9 follicles, the sqh mutant StC undergoing 

flattening present an abnormal pattern of ECad. The AJ are not 

remodelled according to the pattern described for WT cells (Fig. 7E). 

The elongation of the mutant cells do not appear to occur mainly 

along the A/P axis, but is more randomly oriented. In addition, the AJ 

parallel to the A/P axis between cells that have already flattened, are 

no longer visible in the mutant region when compared to the WT 

region. This indicates that the activity of the regulatory light chain of 

the Myosin II is required to control the dynamic of AJ remodelling and 

proper StC flattening.  
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Discussion 

 

Three important morphogenetic events occur in the follicular 

tissues at stage 9 of oogenesis: border cell migration, StC flattening 

and MBFC displacement. My results have advanced the 

understanding of StC flattening and MBFC displacement in two 

crucial ways. First, they demonstrate that the rate of MBFC 

displacement depends on proper StC flattening, which supports the 

idea that these processes occur in a coordinated manner. Second, 

they identify the N pathway as playing an essential role in StC 

flattening. In addition to these new insights into follicular cell 

morphogenesis, my results also demonstrate that the N pathway acts 

during these morphogenetic events by controlling the dynamic of AJ 

disassembly and not cell identity. 

 
StC differentiation and flattening  

It has been previously shown that StC differentiation is a 

prerequisite for flattening (Xi et al., 2003). My data now show that 

differentiation is at least partly independent of flattening, since 

differentiation is still occurring in follicles with fng or Dl Ser mutant 

clones presenting impaired StC flattening. Surprisingly, in such 

follicles, supernumerary StC differentiate, which indicates that the 

number of cells fated to become StC is not determined until late stage 

9 and that the identity of the centripetal cells and the MBFC are 

flexible. It is likely that in fng or Dl Ser mutant follicles, more cells 

differentiate and flatten to compensate for the abnormal flattening of 

the mutant StC, in order to maintain the integrity of the epithelium. 
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This indicates that the number of StC per follicle depends on their 

ability to flatten and on the size of the NC compartment, which is itself 

variable. The flexibility of the terminal cell population acquiring cell 

identity has previously been shown for border cell differentiation 

(Niewiadomska et al., 1999). Thus, although terminal cell 

differentiation is a prerequisite for morphogenesis, the two processes 

may be dependant on each other.  
 

Forces controlling StC flattening and MBFC displacement 

No cellular or molecular link has ever been established between 

border cell migration, StC flattening and MBFC displacement. It has 

been proposed that the displacement of the MBFC towards the 

oocyte starts within the posterior cells, which, by adopting a columnar 

shape, pull their anterior neighbours over the oocyte. As soon as 

these neighbouring cells contact the oocyte, they in turn adopt a 

columnar shape and pull on their anterior neighbouring cells (Horne-

Badovinac and Bilder, 2005; Spradling, 1993). This process is helped 

by the growth of the oocyte. My results improve upon this model (Fig. 

8), in particular by demonstrating that MBFC displacement depends 

on the capacity of the StC to flatten (1) and that this flattening 

depends on the pulling force generated by the posterior cells (2) and 

on forces generated by each StC, referred to as ‘local forces’ (3). 

These points are discussed individually below.  

 That MBFC displacement depends on the capacity of the StC 

to flatten is shown by three lines of evidence. First, MBFC 

displacement delays are observed in follicles in which fng or Dl Ser 

mutant clones encompass only, or mainly, the StC. Second, the 
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expressivity of this phenotype within a follicle depends on the 

proportion of the StC that are mutant. Third, MBFC displacement 

delays are always detected in fng or in Dl Ser mutant follicles that 

display abnormal dynamics in AJ disassembly in the StC.  

Support for the suggestion that StC flattening depends on the 

pulling force created by the posterior cells comes first from previous 

observations of StC behaviour in karst mutant follicles and in 

dicephalic (dic) mutant follicles. In karst follicles, as the posterior cells 

do not adopt a columnar shape, it is proposed that the StC do not 

flatten because the pulling force is not generated (Zarnescu and 

Thomas, 1999). In dic follicles, the oocyte lies in the middle, with NC 

on either side surrounded by anterior terminal cells at the two 

extremities. Because of the position of the oocyte, the posterior end 

of the follicle is in the middle and the two extremities are both anterior 

ends (Gonzalez-Reyes et al., 1997; Gonzalez-Reyes and St 

Johnston, 1998; Lohs-Schardin, 1982). At stage 9, the cells that are 

in contact with the oocyte become columnar and presumably create 

the pulling force that acts on the StC located on both sides of the 

oocyte, to guide their flattening. Second, the shape of the StC after 

they have flattened in WT follicles is more elongated along the A/P 

axis than along the D/V axis. This reveals that the direction of the 

elongation of the cells is not random, but is instead most likely a 

consequence of the localization of the pulling force.  

The final point is that the capacity of the StC to flatten depends 

on local forces. Indeed, the shape of the StC and their coordinated 

flattening are dependent on the pattern of AJ disassembly at stage 9. 

This pattern, with the three-cell junctions disassembling first, followed 
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by the AJ becoming oriented perpendicularly, rather than parallel, to 

the A/P axis of the follicle (Fig. 8), exerts constraints on the cells and 

prevents them from flattening in a uniform and non-directional 

manner. If this cell-autonomous activity is impaired, the StC do not 

flatten properly and the flattening that does occur is no longer 

coordinated around the follicle, as observed in fng or Dl Ser mutant 

follicles. Thus, StC flattening depends, in part, on the cell-

autonomous ability of each StC to control AJ disassembly. This 

control can be a response of the cells that sense and integrate the 

mechanical strain exerted by the pulling force, or can occur 

independently of the action of the pulling force. Finally, as any force 

involves the regulation of the actin network, the observation that two 

proteins linking to the actin cytoskeleton (E Cad and Myosin II) are 

required for proper StC flattening, supports the existence of local 

forces. 

In conclusion, the flattening of the StC is driven by the pulling 

force and local forces, which together facilitate AJ disassembly in a 

polarized manner. As a result, both forces coordinate the rate of StC 

flattening and orient its direction. In parallel, these two forces, with the 

growth of the oocyte, define the rate of MBFC displacement. Thus, 

MBFC displacement and StC flattening are morphogenetic processes 

that are linked at a cellular level.   

 

The Notch pathway controls the dynamics of AJ remodelling 

In contrast to the well-studied role of N in cell identity 

determination, the data presented here provides, to my knowledge, 

the first example in which the N pathway is described as playing a 
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role in AJ disassembly and raises the question of whether this role 

can be extended to other biological contexts. Previous analyses have 

reported a requirement of N during late oogenesis using the Nts1 

allele (Dobens et al., 2005; Gonzalez-Reyes and St Johnston, 1998; 

Keller Larkin et al., 1999; Zhao et al., 2000), but none of them have 

established its precise function. Here, I demonstrate that a fng-

dependent N activity is required in the StC and in the most anterior 

MBFC at stage 9 of oogenesis for StC flattening and to control the 

timing of MBFC displacement. Moreover, the higher accumulation of 

N at disassembling junctions relative to intact junctions in the StC, at 

the exact moment that disassembly is required, supports the fact that 

the role for N in StC flattening is directly related to this specific and 

strong accumulation. Finally, the pattern of expression of reporters of 

N activation and the defects observed when H is overexpressed in 

the StC, indicate that N acts in these processes through the canonical 

pathway. However, as I failed to detect any alterations in cell identity, 

it is possible that the differentiation defects observed with the Nts1 

allele are due to its earlier requirement in the arrest of follicular cell 

mitotic divisions at stage 6 (Deng et al., 2001). Alternatively, the 

differentiation of some of the terminal populations might be affected 

by clones encompassing more, or different, follicular cells than the 

ones I have focused on in this work. Extensive clonal analyses of Dl 

Ser mutant clones should help resolve this issue. 

The activation of the local forces or the modifications of the 

expression and/or localisation of adhesion molecules could either be 

responses to the pulling force or could occur independently of it. One 

of the major keys to understanding the role of N in AJ disassembly is 
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thus to determine whether N acts on the reception and/or the 

integration of the pulling force, or directly on the generation of local 

forces and on the control of the expression and/or localisation of 

adhesion molecules. As for the possibility that N controls local forces, 

it is striking that Zip accumulation is delayed at the AJ that should 

have been disassembled in Dl Ser mutant clones. Indeed, recent 

studies have shown the importance of the accumulation of Zip and 

Sqh at disassembling junctions for cell intercalation during germ-band 

elongation in the Drosophila embryo (Bertet et al., 2004). During this 

process, AJ remodelling occurs with a very specific ordered pattern 

and the localisation of Myosin II mirrors this pattern. The authors also 

show that disrupting Myosin II activity genetically or chemically leads 

to an absence of indicators of AJ remodelling and defects in cell 

intercalation. In light of these observations, my data suggest a model 

for AJ disassembly during StC flattening, in which the N pathway acts 

on the generation of local forces by controlling a polarized 

accumulation of Zip, which in turn remodel AJ between the StC (Fig. 

8). How N controls the localisation of Myosin II and how Myosin II 

remodels AJ locally remains to be determined. Finally, the 

persistence of NCad expression after stage 7 in shg mutant clones 

supports the hypothesis that the control of the expression and/or the 

localisation of adhesion molecules is through multiple routes.  
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Materials and Methods 

 

Drosophila Stocks and Crosses 

 fng13, Dlrev10, Serrev2-11, SerRX106, shgR69 are null alleles (de Celis et 

al., 1993; Godt and Tepass, 1998; Heitzler and Simpson, 1991; Irvine 

and Wieschaus, 1994; Sun and Artavanis-Tsakonas, 1996) and sqh1 

is an hypomorph allele (Karess et al., 1991). CantonS was used as 

wild-type, and reporter lines used were sqhAX3; P(w+, SqhGFP)40 

(Royou et al., 2002), MA33 (Gonzalez-Reyes and St Johnston, 1998), 

dpp-lacZ (Jiang and Struhl, 1995), Dad-lacZ (Kai and Spradling, 

2003), Dl-lacZ (Grossniklaus et al., 1989), E(spl)mβ7-lacZ (an 

enhancer-trap in the E(spl)mβ7 gene, gift of S. Bray, University of 

Cambridge, Cambridge, UK) and E(spl)mβ-CD2 (Cooper and Bray, 

1999). sqh1, shgR69, fng13, Dlrev10, Serrev2-11, and Dlrev10SerRX106 clones 

were generated by Flipase-mediated mitotic recombination on 

FRT101, FRT42D, FRT80-3 or FRT82B chromosomes, and marked 

using π-Myc or GFP transgenes (Xu and Rubin, 1993). Ectopic 

expression of activated-Notch was performed by generating Flip-out 

Gal4 clones in animals carrying UAS-ΔN34a (Doherty et al., 1996) 

and AyGal4 UASGFP (Ito et al., 1997) transgenes. Flipase 

expression was induced by heat shocking two-day old females at 

38°C for 1 hour to generate mutant clones and at 32.5°C for 30 

minutes to generate Flip-out clones. Ectopic expression of Hairless 

(Johannes and Preiss, 2002) was performed by heat shocking, 6 

hours before dissecting, three to five-day old females at 36.5°C for 1 

hour. 
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Follicle Staining 
Immunofluorescent staining of follicles was carried out as 

described previously (Grammont and Irvine, 2001) using goat anti-ß-

galactosidase (1:1000, Biogenesis), rabbit anti-Myc (1:100, Santa 

Cruz), mouse anti-GFP (1:500, Sigma-Aldrich), rabbit anti-Zipper 

(1/1000, (Jordan and Karess, 1997)) mouse anti-Eya (1:500, 

Developmental Studies Hybridoma Bank (DSHB)), mouse anti-αTub 

(1:1000, clone DM1A, Sigma-Aldrich), rat anti-ECad (1:200, DSHB), 

mouse anti-Arm (1/50, DSHB) and rat anti-NCad (1:20, DSHB) with 

the following modification: ovaries from females were dissected 

directly into fixative, five to seven days after Flipase induction (36 

hours for sqh mutant clones).  

 

Description of the markers used 
Follicles were staged according to King (1970) and Spradling 

(1993).  

MA33 is expressed only in the stretched cells from stage 9 

onwards (Gonzalez-Reyes and St Johnston, 1998; Grammont and 

Irvine, 2002; Silver et al., 2005; Xi et al., 2003). Dpp-lacZ is also 

specifically expressed in the stretched cells at stage 9, as it turns on 

in some centripetal cells only at stage 10B (Dobens et al., 2000; Xi et 

al., 2003). Eya expression is specific, at stage 9, to border and 

stretched cell fates (Bai and Montell, 2002). In WT stage 9 follicles, 

the expression of these markers occurs progressively from the 

anterior part of the follicle and progresses posteriorly row by row as a 

wave. Accordingly, a gradient of expression for all these markers is 
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detected in the anterior part of a stage 9 follicle, with the strongest 

expression in the already flattened StC, a weaker expression in the 

flattening StC and the weakest expression in the cells that are about 

to undergo flattening. Since Eya is expressed in both border and 

stretched cells at stage 9, any conclusions drawn from an Eya 

staining were always confirmed with MA33, dpp-lacZ or Dad-lacZ to 

avoid ambiguity concerning the fate of the cells. Dad was used as a 

stretched cell fate marker, since its expression pattern is similar to 

that of dpp-lacZ during stage 9. Surface areas of StC were 

determined with the LSM510Meta software. Follicles were flattened 

under a cover slip, such that the StC in immediate contact with either 

the cover slip or the slide (i.e. those on the top or the bottom of the 

follicle) could be viewed within a single focal plane. Only these StC 

were used for surface area calculations in order to avoid inaccuracies 

caused by the natural curvature of the follicle, which is not taken into 

account. 

 

Imaging 
Confocal images were obtained using a Zeiss LSM510Meta 

microscope with 40x/1.3 Plan-NeoFluar and 63x/1.4 Plan-
Apochromat objectives. All imaging was done at RT. Figures were 
processed using the LSM510Meta software and Photoshop 7 (Adobe 
Systems) and Freehand 10 (macromedia). In all panels, unless 

otherwise stated, the focus is on the upper plane and a projection (z 

stack) of all the z-sections in which the stretched cells are visible, is 

presented. 
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Online Supplemental Material  

Supplemental data S1: “Arm expression pattern mirrors AJ 

remodeling” describes the expression of Arm in WT follicles and in Dl 

Ser mutant follicles. 

Supplemental data S2: “AJ remodeling in fng mutant follicles is 

delayed, but not blocked” describes the expression of ECad in stage 

10A fng mutant follicle. 

Supplemental data S3: “StC flattening and AJ remodeling 

required transcriptional activity of the N pathway” describes the 

expression of Dl-lacZ, E(spl)mβ7-lacZ and E(spl)mβ-CD2 reporters in 

stage 9 follicles, the delay in AJ remodelling observed in stage 9 

follicles overexpressing H and in stage 9 follicles overexpressing 

Nact. 

Supplemental data S4: “shg controls the down-regulation of 

NCad” describes the expression of NCad in shg mutant clones at 

stage 7 and 8.  
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Abbreviations list 

AJ : Adherens junctions  

A/P: Antero-posterior 

MBFC: Main body follicular cells 

NC: Nurse cells 

StC: Stretched cells 

WT: Wild type  
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Figures legends   

 

Fig. 1. Schematic of follicular cell populations.  

In all figures, anterior is to the left. (A) Schematic of a wild-type 

ovariole. The arrangement and identities of the different cells - oocyte 

(nucleus coloured in brown), NC (tan), follicular cells (S1) or MBFC 

(from S2 to S14) (gray), polar cells (red), stalk cells (light blue), 

terminal cells (dark gray), border cells (green), StC (pink), centripetal 

cells (dark blue) and posterior cells (black) - are shown in the 

germarium and in stage 2 (S2), 9 (S9) and 10 (S10) follicles. (B) StC 

nuclei of the stage 10 WT follicle (long arrows). B’’’ is focused on the 

medial plane. Small arrows indicate the border between the oocyte 

and the NC.  
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Fig. 2. fng is required in the StC and in the anterior MBFC to 

control StC number and the timing of the MBFC displacement. 
Follicles of stage 10A (A, B, E, F) or stage 10B (C, D) with fng13 

clones marked by the absence of Myc. The yellow line marks the 

border between the NC and the oocyte. (A) The cluster of cells 

(outlined in red in A) overlying the NC presents a density of nuclei 

similar to the density of MBFC nuclei. (B) A cluster of cells (outlined in 

red in B’) with a high density of nuclei overlies the NC. Some cells of 

the clusters are WT (arrows). B’’ and B’’’ are magnified views on the 

boxed area in B’. The anterior cells of such clusters express a StC 

fate (B’’, B’’’). B’’’’ is focused on the medial plane showing some 

MBFC overlying a NC (bracket). (C) A follicle with a clone 

encompassing some StC and MBFC. No cluster of cells with a high 

density overlies the NC. (D) D is a composite view of all the z-

sections throughout the follicle whereas D’ and D’’ are focused on the 

upper and lower planes of the follicle respectively. All the cells 

overlying the NC have a StC fate and are 43 and 36 in number in the 

two focal planes shown (D’ and D’’). The few WT StC are outlined 

with a dashed line. (E) A follicle with a clone encompassing only 

some MBFC (outline in white in E’’). More MBFC overlie the NC in the 

mutant region (larger bracket) than in the WT region (smaller 

bracket). (F) A follicle with a large fng clone encompassing most of 

the MBFC and a few StC. An abnormally high number of cells is 

visible over the NC. F’ and F’’ are magnified views of the anterior part 

with a focus on the StC. The mutant cells are outlined in white. MBFC 

posterior to WT StC are less delayed than MBFC posterior to 

unflattened mutant StC (arrows).  
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Fig. 3. fng is not required for StC differentiation. Stage 9 follicles 

with fng13 clones (outlined in white) spread over only on one side of 

the follicle and marked by the absence of Myc. Expressions of MA33 

(A), Dad-lacZ (B), dpp-lacZ (C) and Eya (A, B, C) are not affected in 

mutant cells (arrows) in comparison to WT cells (arrowheads) located 

at the same A/P position.  
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Fig. 4. Adherens junction remodelling in WT follicles. A’-F’ are 

magnified views of the boxed areas in A-F. (A) An early stage 9 

follicle showing the hexagonally shaped follicular cells that make 

contact through two-cell (arrow) or three-cell junctions (arrowhead). 

A’’’ is a z-section of the follicular cell shown in A’’. AJ are localised 

apically (A’’, A’’’). (B) A mid stage 9 follicle. The asterisks indicate the 

StC undergoing flattening. ECad is not detected at the three-cell 

junction between flattened and flattening cells (white arrowhead), but 

is visible between flattening and unflattened cells (yellow arrowhead). 

Spots of ECad are present at the perpendicularly-oriented junctions 

between flattened and flattening cells (short white arrow). ECad is 

strongly detected at the perpendicularly-oriented junctions between 

flattening and unflattened (yellow arrow) and at the junctions oriented 

parallel to the A/P axis (long white arrow). (C) A late stage 9 follicle 

with most of the AJ parallel to the A/P axis stained (arrow). (D) A 

stage 10A follicle, where ECad is detected in the part of the StC that 

is squeezed into the interstitial gaps between NC (arrowheads). The 

AJ parallel to the A/P axis are faintly detectable (long arrows), but 

ECad increases in the part of the StC overlying the NC (short 

arrows). (E) A stage 10B follicle, where the AJ parallel to the A/P axis 

are no longer visible. ECad is accumulated in the part of the StC that 

overlies the NC (arrows). (F) A stage 10B follicle with a Tubulin 

network present in the cytoplasm of the StC that is squeezed into the 

gaps between NC (arrowheads) and in the cytoplasm overlying the 

NC (arrows).  
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Fig. 5. The N pathway is required for the dynamics of AJ 

remodelling. The yellow line marks the border between the NC and 

the oocyte. (A, B) Follicles with fng13 clones marked by the absence 

of Myc. (A) A late stage 9 follicle with a fng clone encompassing 

some StC and MBFC. A’ and A’’ are magnified views of the anterior 

part of the follicle shown in A. The three-cell junctions are 

disassembled in the WT region (yellow arrow) but are still present in 

the mutant region (long arrow). More posteriorly, ECad is still present 

all around the edges of the cells in the mutant region (arrowhead). A 

WT cell also displays this pattern (short arrow). More StC 

differentiated in the mutant region (outlined in white) and MBFC 

displacement is delayed. (B) A stage 10B follicle with a large fng13 

clone. An abnormally high number of StC is observed and the surface 

area of one of them is outlined. (C) A stage 10A follicle with a Dlrev10 

SerRX106 clone, marked by the absence of GFP, encompassing some 

StC and MBFC (outline in white). GFP expression is also visible in 

the germline cells. Also apparent are delays in MBFC displacement 

and AJ remodelling. (D, E) WT follicles. The flattening StC are 

marked with an asterisk. N is specifically accumulated at the 

disassembling three-cell junctions (arrows). (F, G) Follicles 

overexpressing H. (F) No AJ disassembly are detected in an early-

mid stage 9 follicle. (G) Some three cell-types junctions are 

disassembling in some StC in a mid-late stage 9 follicle.  
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Fig. 6. The N pathway controls the localisation of Myosin II. The 

use of a colour gradient allows the visualization of differences in 

intensities of accumulation from none (black) to strongest (red). (A–C) 

Mid stage 9 WT follicles. (A) A line of Zip expression (flanked by short 

arrows) perpendicular to the A/P axis is detected at the boundary 

between flattened and flattening StC (marked with an asterisk). This 

line comprises some of the junctions perpendicular to the A/P axis 

(long arrow). (B) Zip is accumulating more strongly at the three-cell 

junctions between flattening and unflattened StC (arrows). (C) Sqh-

GFP expression. A line of Sqh-GFP expression (flanked by arrows) 

perpendicular to the A/P axis is detected at the boundary between 

flattened and flattening StC. (D, E) Follicles with Dlrev10 SerRX106 

clones marked by the absence of GFP. MBFC displacement is 

delayed in the mutant region (D, E). D’-D’’’ and E’-E’’’ are magnified 

views of the boxed areas in D and in E. (D) Zip is strongly 

accumulated along a line perpendicular to the A/P axis in the WT 

region (arrow), which stops at the boundary of the mutant clone 

(outlined in black). (E) Zip is strongly accumulated at disassembling 

three-cell junctions in the WT region (short arrow). No accumulation 

of Zip is detected in the mutant region at the same A/P position 

(arrowhead), but an accumulation is detected more anteriorly (long 

arrows). The boundary between WT and mutant regions is outlined in 

white (E’) or in black (E’’’). 
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Fig. 7. ECad and Myosin II are required for proper StC flattening, 

the timing of MBFC displacement and AJ remodelling. All clones 

are outlined in yellow in A and B and in white in E. In C and D’, the 

focus is on the medial plane. (A, B) Follicles with shgR69 clones, 

marked by the absence of GFP, encompass some StC and some 

MBFC. (A) A mid stage 9 follicle with a higher density of StC in the 

mutant region. A higher expression of NCad is observed in the 

mutant clone. A’’ and A’’’’’ are magnified views on the boxed area in 

A’. The red line marks the border between flattening and unflattened 

StC. (B) A stage 10A follicle with delayed MBFC displacement 

(arrow) in a mutant region. B’’ and B’’’ are magnified views on the 

boxed area in B. (C, D) WT ovariole (C) and stage 9 follicle (D) 

stained for NCad. (E) Stage 9 follicle with sqh1 clone, marked by the 

absence of GFP, encompassing some StC and some MBFC. The 

elongation of the cells (red arrows in mutant and red arrowheads in 

WT) is no longer oriented in the mutant region and the AJ parallel to 

the A/P axis between mutant cells that have already flattened are no 

longer visible (yellow arrows - compared to yellow arrowheads in 

WT).  
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Fig. 8. Model of the morphogenesis of the follicular cells. (A) 

Schematic of a stage 9 follicle. The different populations of somatic 

cells - StC (nuclei colored in pink), MBFC (gray) and posterior cells 

(black) - are shown, as well as the forces involved in StC flattening 

and MBFC displacement - pulling force (black arrows), oocyte growth 

(brown arrows) and local forces (red double arrows). (B) Schematic of 

AJ disassembly in StC during stage 9. The AJ of four rows of three 

StC are represented at various stages of flattening. The asterisks 

mark the flattening StC. (a) Before flattening, the cells have a 

hexagonal shape. (b) In row 1, the anterior three-cell junctions are 

disassembling. (c) In row 1, the anterior two-cell junctions 

perpendicular to the A/P axis are disassembling as well as the three-

cell junctions between rows 1 and 2, allowing the elongation of the 

cells along the A/P axis. The junctions parallel to the A/P axis of row 

1 are intact. (d) In row 1, the cells are fully flattened. Their junctions 

parallel to the A/P are still present. The two-cell junctions 

perpendicular to the A/P axis between rows 1 and 2, are 

disassembling and the three-cell junctions between row 2 and 3 are 

disassembled.  

 

H
A

L author m
anuscript    inserm

-00166422, version 1
H

A
L author m

anuscript    inserm
-00166422, version 1


