H. Stary, A. Chandler, R. Dinsmore, V. Fuster, S. Glagov et al., A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis : A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Circulation, vol.92, issue.5, pp.1355-74, 1995.
DOI : 10.1161/01.CIR.92.5.1355

M. Aikawa and P. Libby, The vulnerable atherosclerotic plaque, Cardiovascular Pathology, vol.13, issue.3, pp.125-163, 2004.
DOI : 10.1016/S1054-8807(04)00004-3

P. Libby, Inflammation in atherosclerosis, Nature, vol.103, issue.6917, pp.868-74, 2002.
DOI : 10.1074/jbc.274.45.32048

P. Mullenix, C. Andersen, and B. Starnes, Atherosclerosis as Inflammation, Annals of Vascular Surgery, vol.19, issue.1, pp.130-138, 2005.
DOI : 10.1007/s10016-004-0153-z

A. Lucas, R. Korol, and C. Pepine, Inflammation in Atherosclerosis: Some Thoughts About Acute Coronary Syndromes, Circulation, vol.113, issue.17, pp.728-760, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.601492

J. Danesh, J. Wheeler, G. Hirschfield, S. Eda, G. Eiriksdottir et al., C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease, New England Journal of Medicine, vol.350, issue.14, pp.1387-97, 2004.
DOI : 10.1056/NEJMoa032804

A. Chamorro and J. Hallenbeck, The Harms and Benefits of Inflammatory and Immune Responses in Vascular Disease, Stroke, vol.37, issue.2, pp.291-294, 2006.
DOI : 10.1161/01.STR.0000200561.69611.f8

E. Bonora, The metabolic syndrome and cardiovascular disease, Annals of Medicine, vol.12, issue.4, pp.64-80, 2006.
DOI : 10.7326/0003-4819-134-1-200101020-00014

C. Ballantyne and V. Nambi, Markers of inflammation and their clinical significance, Atherosclerosis Supplements, vol.6, issue.2, pp.21-30, 2005.
DOI : 10.1016/j.atherosclerosissup.2005.02.005

E. Armstrong, D. Morrow, and M. Sabatine, Inflammatory Biomarkers in Acute Coronary Syndromes: Part IV: Matrix Metalloproteinases and Biomarkers of Platelet Activation, Circulation, vol.113, issue.9, pp.382-387, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.595553

E. Armstrong, D. Morrow, and M. Sabatine, Inflammatory Biomarkers in Acute Coronary Syndromes: Part I: Introduction and Cytokines, Circulation, vol.113, issue.6, pp.72-77, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.595520

E. Armstrong, D. Morrow, and M. Sabatine, Inflammatory Biomarkers in Acute Coronary Syndromes: Part II: Acute-Phase Reactants and Biomarkers of Endothelial Cell Activation, Circulation, vol.113, issue.7, pp.152-157, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.595538

E. Armstrong, D. Morrow, and M. Sabatine, Inflammatory Biomarkers in Acute Coronary Syndromes: Part III: Biomarkers of Oxidative Stress and Angiogenic Growth Factors, Circulation, vol.113, issue.8, pp.289-92, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.595546

K. Koh, S. Han, and M. Quon, Inflammatory Markers and the Metabolic Syndrome, Journal of the American College of Cardiology, vol.46, issue.11, pp.1978-85, 2005.
DOI : 10.1016/j.jacc.2005.06.082

B. Furie and B. Furie, Thrombus formation in vivo, Journal of Clinical Investigation, vol.115, issue.12, pp.3355-62, 2005.
DOI : 10.1172/JCI26987

M. Gawaz, H. Langer, and A. May, Platelets in inflammation and atherogenesis, Journal of Clinical Investigation, vol.115, issue.12, pp.3378-84, 2005.
DOI : 10.1172/JCI27196

P. Frenette, R. Johnson, R. Hynes, and D. Wagner, Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin., Proceedings of the National Academy of Sciences, vol.92, issue.16, pp.7450-7454, 1995.
DOI : 10.1073/pnas.92.16.7450

R. Mcever, P-selectin and PSGL-1: exploiting connections between inflammation and venous thrombosis, Thromb Haemost, vol.87, pp.364-369, 2002.

R. Mcever and R. Cummings, Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment., Journal of Clinical Investigation, vol.100, issue.3, pp.485-91, 1997.
DOI : 10.1172/JCI119556

J. Lopez and J. Dong, Structure and function of the glycoprotein Ib-IX-V complex, Current Opinion in Hematology, vol.4, issue.5, pp.323-332, 1997.
DOI : 10.1097/00062752-199704050-00005

J. Dong, G. Sae-tung, and J. Lopez, Role of glycoprotein V in the formation of the platelet highaffinity thrombin-binding site, Blood, vol.89, pp.4355-63, 1997.

C. Blondin, I. Bataille, and D. Letourneur, Polysaccharides for Vascular Cell Targeting, Critical Reviews?? in Therapeutic Drug Carrier Systems, vol.17, issue.4, pp.327-75, 2000.
DOI : 10.1615/CritRevTherDrugCarrierSyst.v17.i4.20

C. Elangbam, C. Qualls, J. Dahlgren, and R. , Cell Adhesion Molecules???Update, Veterinary Pathology, vol.2, issue.1, pp.61-73, 1997.
DOI : 10.1016/0092-8674(90)90230-C

L. Lasky, Selectin-Carbohydrate Interactions and the Initiation of the Inflammatory Response, Annual Review of Biochemistry, vol.64, issue.1, pp.113-152, 1995.
DOI : 10.1146/annurev.bi.64.070195.000553

J. Esko and L. Zhang, Influence of core protein sequence on glycosaminoglycan assembly, Current Opinion in Structural Biology, vol.6, issue.5, pp.663-70, 1996.
DOI : 10.1016/S0959-440X(96)80034-0

J. Wu, L. Wu, J. Lynch, R. Blessing, W. White et al., Linking inflammation and atherogenesis: Soluble markers identified for the detection of risk factors and for early risk assessment Novel diagnostic test for acute stroke, Clin Chim Acta. Stroke, vol.36635, issue.27, pp.74-8057, 2004.

F. Jaffer, P. Libby, and R. Weissleder, Molecular and Cellular Imaging of Atherosclerosis, Journal of the American College of Cardiology, vol.47, issue.7, pp.1328-1366, 2006.
DOI : 10.1016/j.jacc.2006.01.029

A. Tedgui, Z. Mallat, K. Stokes, and D. Granger, Cytokines and Atherosclerosis, Physiol Rev. J Physiol, vol.86562, issue.30, pp.515-81647, 2005.
DOI : 10.1002/9783527629589.ch4

A. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

N. Nighoghossian, L. Derex, and P. Douek, The Vulnerable Carotid Artery Plaque: Current Imaging Methods and New Perspectives, Stroke, vol.36, issue.12, pp.2764-72, 2005.
DOI : 10.1161/01.STR.0000190895.51934.43

R. Corti, Noninvasive imaging of atherosclerotic vessels by MRI for clinical assessment of the effectiveness of therapy, Pharmacology & Therapeutics, vol.110, issue.1, pp.57-70, 2006.
DOI : 10.1016/j.pharmthera.2005.09.004

B. Rutt, S. Clarke, and Z. Fayad, Atherosclerotic Plaque Characterization by MR Imaging, Current Drug Target -Cardiovascular & Hematological Disorders, vol.4, issue.2, pp.147-59, 2004.
DOI : 10.2174/1568006043336393

E. Spuentrup and R. Botnar, Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis, European Radiology, vol.15, issue.1, pp.1-14, 2006.
DOI : 10.1007/s00330-005-2886-7

S. Clarke, R. Hammond, J. Mitchell, and B. Rutt, Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology, Magnetic Resonance in Medicine, vol.106, issue.6, pp.1199-208, 2003.
DOI : 10.1002/mrm.10618

S. Clarke, V. Beletsky, R. Hammond, R. Hegele, and B. Rutt, Validation of Automatically Classified Magnetic Resonance Images for Carotid Plaque Compositional Analysis, Stroke, vol.37, issue.1, pp.93-100, 2006.
DOI : 10.1161/01.STR.0000196985.38701.0c

T. Saam, J. Cai, Y. Cai, N. An, A. Kampschulte et al., Carotid Plaque Composition Differs Between Ethno-Racial Groups: An MRI Pilot Study Comparing Mainland Chinese and American Caucasian Patients, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.3, pp.611-617, 2005.
DOI : 10.1161/01.ATV.0000155965.54679.79

V. Itskovich, D. Samber, V. Mani, J. Aguinaldo, J. Fallon et al., Quantification of human atherosclerotic plaques using spatially enhanced cluster analysis of multicontrast-weighted magnetic resonance images, Magnetic Resonance in Medicine, vol.22, issue.3, pp.515-538, 2004.
DOI : 10.1002/mrm.20154

C. Yuan, L. Mitsumori, K. Beach, and K. Maravilla, Carotid Atherosclerotic Plaque: Noninvasive MR Characterization and Identification of Vulnerable Lesions, Radiology, vol.221, issue.2, pp.285-99, 2001.
DOI : 10.1148/radiol.2212001612

V. Cappendijk, K. Cleutjens, A. Kessels, S. Heeneman, G. Schurink et al., Assessment of Human Atherosclerotic Carotid Plaque Components with Multisequence MR Imaging: Initial Experience, Radiology, vol.234, issue.2, pp.487-92, 2005.
DOI : 10.1148/radiol.2342032101

B. Wasserman, W. Smith, H. Trout, R. Cannon, R. Balaban et al., Carotid Artery Atherosclerosis: In Vivo Morphologic Characterization with Gadolinium-enhanced Double-oblique MR Imaging???Initial Results, Radiology, vol.223, issue.2, pp.566-73, 2002.
DOI : 10.1148/radiol.2232010659

C. Yuan, W. Kerwin, M. Ferguson, N. Polissar, S. Zhang et al., Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization, Journal of Magnetic Resonance Imaging, vol.20, issue.1, pp.62-69, 2002.
DOI : 10.1002/jmri.10030

B. Wasserman, R. Wityk, H. Trout, and R. Virmani, Low-Grade Carotid Stenosis: Looking Beyond the Lumen With MRI, Stroke, vol.36, issue.11, pp.2504-2517, 2005.
DOI : 10.1161/01.STR.0000185726.83152.00

J. Cai, T. Hatsukami, M. Ferguson, W. Kerwin, T. Saam et al., In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core HAL author manuscript inserm-00162554

W. Kerwin, O. Brien, K. Ferguson, M. Polissar, N. Hatsukami et al., Inflammation in Carotid Atherosclerotic Plaque: A Dynamic Contrast-enhanced MR Imaging Study, Radiology, vol.241, issue.2, pp.459-68, 2006.
DOI : 10.1148/radiol.2412051336

C. Yuan, W. Kerwin, V. Yarnykh, J. Cai, T. Saam et al., MRI of atherosclerosis in clinical trials Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths, NMR Biomed. J Magn Reson Imaging, vol.1923, issue.48, pp.636-54691, 2006.

K. Kelly, J. Allport, A. Tsourkas, V. Shinde-patil, L. Josephson et al., Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research, vol.96, issue.3, pp.327-363, 2005.
DOI : 10.1161/01.RES.0000155722.17881.dd

W. Kerwin, A. Hooker, M. Spilker, P. Vicini, M. Ferguson et al., Quantitative Magnetic Resonance Imaging Analysis of Neovasculature Volume in Carotid Atherosclerotic Plaque, Circulation, vol.107, issue.6, pp.851-857, 2003.
DOI : 10.1161/01.CIR.0000048145.52309.31

V. Mani, V. Itskovich, S. Aguiar, G. Mizsei, J. Aguinaldo et al., Comparison of gated and nongated fast multislice black-blood carotid imaging using rapid extended coverage and inflow/outflow saturation techniques, Journal of Magnetic Resonance Imaging, vol.51, issue.5, pp.628-661, 2005.
DOI : 10.1002/jmri.20428

J. Thomas, L. Jong, J. Spence, B. Wasserman, B. Rutt et al., Anthropometric data for magnetic resonance imaging of the carotid bifurcation Yarnykh VL, Yuan C. Simultaneous outer volume and blood suppression by quadruple inversion-recovery, J Magn Reson Imaging. Magn Reson Med, vol.2155, pp.845-854, 2005.

T. Allkemper, C. Bremer, L. Matuszewski, W. Ebert, and P. Reimer, Contrast-enhanced Blood-Pool MR Angiography with Optimized Iron Oxides: Effect of Size and Dose on Vascular Contrast Enhancement in Rabbits, Radiology, vol.223, issue.2, pp.432-440, 2002.
DOI : 10.1148/radiol.2232010241

L. Chaabane, N. Pellet, M. Bourdillon, D. Mansard, C. Sulaiman et al., Contrast enhancement in atherosclerosis development in a mouse model: in vivo results at 2 Tesla, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.44, issue.3-6, pp.188-95, 2004.
DOI : 10.1007/s10334-004-0055-7

URL : https://hal.archives-ouvertes.fr/hal-00427554

A. Morawski, P. Winter, K. Crowder, S. Caruthers, R. Fuhrhop et al., Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI, Magnetic Resonance in Medicine, vol.107, issue.3, pp.480-486, 2004.
DOI : 10.1002/mrm.20010

S. Wickline, A. Neubauer, P. Winter, S. Caruthers, and G. Lanza, Applications of Nanotechnology to Atherosclerosis, Thrombosis, and Vascular Biology, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.3, pp.435-476, 2006.
DOI : 10.1161/01.ATV.0000201069.47550.8b

W. Mulder, G. Strijkers, G. Van-tilborg, A. Griffioen, K. Nicolay et al., Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging Theory of proton relaxation induced by superparamagnetic particles, NMR Biomed. J Chem Phys, vol.19110, issue.59, pp.142-645403, 1999.

A. Roch, R. Muller, and P. Gillis, Water relaxation by SPM particles: Neglecting the magnetic anisotropy? A caveat, Journal of Magnetic Resonance Imaging, vol.35, issue.1, pp.94-100, 2001.
DOI : 10.1002/jmri.1157

G. Simon, J. Bauer, O. Saborovski, Y. Fu, C. Corot et al., T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning, European Radiology, vol.10, issue.suppl 1, pp.738-783, 2006.
DOI : 10.1007/s00330-005-0031-2

C. Riviere, F. Boudghene, F. Gazeau, J. Roger, J. Pons et al., Iron Oxide Nanoparticle???labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation, Radiology, vol.235, issue.3, pp.959-67, 2005.
DOI : 10.1148/radiol.2353032057

S. Schmitz, S. Coupland, R. Gust, S. Winterhalter, S. Wagner et al., Superparamagnetic Iron Oxide???Enhanced MRI of Atherosclerotic Plaques in Watanabe Hereditable Hyperlipidemic Rabbits, Investigative Radiology, vol.35, issue.8, pp.460-71, 2000.
DOI : 10.1097/00004424-200008000-00002

S. Ruehm, C. Corot, P. Vogt, S. Kolb, and J. Debatin, Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits, Circulation, vol.103, issue.3, pp.415-437, 2001.
DOI : 10.1161/01.CIR.103.3.415

S. Schmitz, M. Taupitz, S. Wagner, S. Coupland, R. Gust et al., Iron-oxideenhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling, Invest Radiol. J Magn Reson Imaging, vol.3721, issue.66, pp.405-11432, 2002.

W. Rogers and P. Basu, Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging, Atherosclerosis, vol.178, issue.1, pp.67-73, 2005.
DOI : 10.1016/j.atherosclerosis.2004.08.017

F. Hyafil, J. Laissy, M. Mazighi, D. Tchetche, L. Louedec et al., Ferumoxtran-10-Enhanced MRI of the Hypercholesterolemic Rabbit Aorta: Relationship Between Signal Loss and Macrophage Infiltration, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.1, pp.176-81, 2006.
DOI : 10.1161/01.ATV.0000194098.82677.57

C. Herborn, F. Vogt, T. Lauenstein, O. Dirsch, C. Corot et al., Magnetic resonance imaging of experimental atherosclerotic plaque: Comparison of two ultrasmall superparamagnetic particles of iron oxide Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma, J Magn Reson Imaging Circulation, vol.70107, pp.1545-1554, 2003.

S. Schmitz, M. Taupitz, S. Wagner, K. Wolf, D. Beyersdorff et al., Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles, Journal of Magnetic Resonance Imaging, vol.11, issue.4, pp.355-61, 2001.
DOI : 10.1002/jmri.1194

M. Kooi, V. Cappendijk, K. Cleutjens, A. Kessels, P. Kitslaar et al., Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging, Circulation, vol.107, issue.19, pp.2453-2461, 2003.
DOI : 10.1161/01.CIR.0000068315.98705.CC

R. Trivedi, J. Uk-i, M. Graves, P. Kirkpatrick, and J. Gillard, Noninvasive imaging of carotid plaque inflammation, Neurology, vol.63, issue.1, pp.187-195, 2004.
DOI : 10.1212/01.WNL.0000132962.12841.1D

R. Trivedi, C. Mallawarachi, J. Uk-i, M. Graves, J. Horsley et al., Identifying Inflamed Carotid Plaques Using In Vivo USPIO-Enhanced MR Imaging to Label Plaque Macrophages, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.26, issue.7, pp.1601-1607, 2006.
DOI : 10.1161/01.ATV.0000222920.59760.df

T. Tang, S. Howarth, S. Miller, R. Trivedi, M. Graves et al., Assessment of Inflammatory Burden Contralateral to the Symptomatic Carotid Stenosis Using High-Resolution Ultrasmall, Superparamagnetic Iron Oxide-Enhanced MRI, Stroke, vol.37, issue.9, pp.2266-70, 2006.
DOI : 10.1161/01.STR.0000236063.47539.99

C. Corot, P. Robert, J. Idee, and M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging???, Advanced Drug Delivery Reviews, vol.58, issue.14, pp.1471-504, 2006.
DOI : 10.1016/j.addr.2006.09.013

M. Wiart, N. Davoust, J. Pialat, V. Desestret, S. Moucharaffie et al., MRI Monitoring of Neuroinflammation in Mouse Focal Ischemia, Stroke, vol.38, issue.1, pp.131-138, 2007.
DOI : 10.1161/01.STR.0000252159.05702.00

URL : https://hal.archives-ouvertes.fr/hal-00443499

V. Mani, K. Briley-saebo, V. Itskovich, D. Samber, and Z. Fayad, Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): Sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T, Magnetic Resonance in Medicine, vol.10, issue.1, pp.126-161, 2006.
DOI : 10.1002/mrm.20739

C. Heyn, C. Bowen, B. Rutt, and P. Foster, Detection threshold of single SPIO-labeled cells with FIESTA, Magnetic Resonance in Medicine, vol.99, issue.2, pp.312-332, 2005.
DOI : 10.1002/mrm.20356

F. Swirski, M. Pittet, M. Kircher, E. Aikawa, F. Jaffer et al., Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease, Proceedings of the National Academy of Sciences, vol.112, issue.10, pp.10340-10345, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.537480

W. Mulder, K. Douma, G. Koning, M. Van-zandvoort, E. Lutgens et al., Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse, Magnetic Resonance in Medicine, vol.4, issue.5, pp.1170-1174, 2006.
DOI : 10.1002/mrm.20883

K. Briley-saebo, V. Amirbekian, V. Mani, J. Aguinaldo, E. Vucic et al., Gadolinium mixed-micelles: Effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis, Magnetic Resonance in Medicine, vol.13, issue.6, pp.1336-1382, 2006.
DOI : 10.1002/mrm.21094

A. Tsourkas, V. Shinde-patil, K. Kelly, P. Patel, A. Wolley et al., In Vivo Imaging of Activated Endothelium Using an Anti-VCAM-1 Magnetooptical Probe, Bioconjugate Chemistry, vol.16, issue.3, pp.576-81, 2005.
DOI : 10.1021/bc050002e

H. Kang, L. Josephson, A. Petrovsky, R. Weissleder, A. Bogdanov et al., Magnetic Resonance Imaging of Inducible E-Selectin Expression in Human Endothelial Cell Culture, Bioconjugate Chemistry, vol.13, issue.1, pp.122-129, 2002.
DOI : 10.1021/bc0155521

S. Laurent, V. Elst, L. Fu, Y. Muller, and R. , )A, a New MRI Contrast Agent Targeted to Inflammation, Bioconjugate Chemistry, vol.15, issue.1, pp.99-103, 2004.
DOI : 10.1021/bc034114m

S. Boutry, C. Burtea, S. Laurent, G. Toubeau, V. Elst et al., Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent, Magnetic Resonance in Medicine, vol.56, issue.4, pp.800-807, 2005.
DOI : 10.1002/mrm.20403

N. Sibson, A. Blamire, M. Bernades-silva, S. Laurent, S. Boutry et al., MRI detection of early endothelial activation in brain inflammation, Magnetic Resonance in Medicine, vol.13, issue.2, pp.248-52, 2004.
DOI : 10.1002/mrm.10723

P. Winter, A. Neubauer, S. Caruthers, T. Harris, J. Robertson et al., Endothelial {alpha}{nu}{beta}3 Integrin-Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles, Arterioscler Thromb Vasc Biol Circulation, vol.89108, pp.2270-2274, 2003.

S. Anderson, R. Rader, W. Westlin, C. Null, D. Jackson et al., Magnetic resonance contrast enhancement of neovasculature with ?v?3-targeted nanoparticles, Magnetic Resonance in Medicine, vol.95, issue.3, pp.433-442, 2000.
DOI : 10.1002/1522-2594(200009)44:3<433::AID-MRM14>3.0.CO;2-9

M. Nahrendorf, F. Jaffer, K. Kelly, D. Sosnovik, E. Aikawa et al., Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis, Circulation, vol.114, issue.14, pp.1504-1515, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.646380

H. Alsaid, D. Souza, G. Bourdillon, M. Chaubet, F. Sulaiman et al., Molecular Imaging of Inflammation in Atherosclerosis Plaque Using Functionalized MRI Contrast Agent C-MALISA (cellular magneticlinked immunosorbent assay), a new application of cellular ELISA for MRI, Proc. Intl. Soc. Mag. Reson. Med. J Inorg Biochem, vol.99, pp.1135-1179, 2005.

X. Montet, K. Montet-abou, F. Reynolds, R. Weissleder, and L. Josephson, Nanoparticle Imaging of Integrins on Tumor Cells, Neoplasia, vol.8, issue.3, pp.214-236, 2006.
DOI : 10.1593/neo.05769

H. Li, B. Gray, I. Corbin, C. Lebherz, H. Choi et al., Mr and fluorescent imaging of low-density lipoprotein receptors1, Academic Radiology, vol.11, issue.11, pp.1251-1260, 2004.
DOI : 10.1016/j.acra.2004.08.007

M. Sirol, V. Itskovich, V. Mani, J. Aguinaldo, J. Fallon et al., Lipid-Rich Atherosclerotic Plaques Detected by Gadofluorine-Enhanced In Vivo Magnetic Resonance Imaging, Circulation, vol.109, issue.23, pp.2890-2896, 2004.
DOI : 10.1161/01.CIR.0000129310.17277.E7

J. Frias, K. Williams, E. Fisher, and Z. Fayad, Recombinant HDL-Like Nanoparticles:?? A Specific Contrast Agent for MRI of Atherosclerotic Plaques, Journal of the American Chemical Society, vol.126, issue.50, pp.16316-16323, 2004.
DOI : 10.1021/ja044911a

V. Amirbekian, M. Lipinski, K. Briley-saebo, S. Amirbekian, J. Aguinaldo et al., to evaluate atherosclerosis noninvasively using molecular MRI, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.961-967, 2007.
DOI : 10.1016/0092-8674(92)90362-G

S. Amirbekian, J. Aguinaldo, V. Amirbekian, M. Sirol, F. Hyafil et al., Imaging of Atherosclerosis In Vivo Using a Magnetic Resonance Contrast Probe Molecularly Targeted to Matrix Metalloproteinases (MMPs), Proc. Intl. Soc. Mag. Reson. Med., 14. Seattle, p.559, 2006.

J. Chen, W. Pham, R. Weissleder, A. Bogdanov, and . Jr, Human myeloperoxidase: A potential target for molecular MR imaging in atherosclerosis, Magnetic Resonance in Medicine, vol.36, issue.5, pp.1021-1029, 2004.
DOI : 10.1002/mrm.20270

G. Lanza, X. Yu, P. Winter, D. Abendschein, K. Karukstis et al., Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent: Implications for Rational Therapy of Restenosis, Circulation, vol.106, issue.22, pp.2842-2849, 2002.
DOI : 10.1161/01.CIR.0000044020.27990.32

D. Sosnovik, E. Schellenberger, M. Nahrendorf, M. Novikov, T. Matsui et al., Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle Annexin A5-Conjugated Quantum Dots with a Paramagnetic Lipidic Coating for the Multimodal Detection of Apoptotic Cells Annexin A5-functionalized bimodal lipid-based contrast agents for the detection of apoptosis, Magn Reson Med. Bioconjug Chem. Bioconjug Chem, vol.541717, issue.104, pp.718-24865, 2005.

A. Moody, S. Allder, G. Lennox, J. Gladman, and P. Fentem, Direct magnetic resonance imaging of carotid artery thrombus in acute stroke, The Lancet, vol.353, issue.9147, pp.122-125, 1999.
DOI : 10.1016/S0140-6736(05)76159-6

R. Corti, J. Osende, Z. Fayad, J. Fallon, V. Fuster et al., In vivo noninvasive detection and age definition of arterial thrombus by MRI, Journal of the American College of Cardiology, vol.39, issue.8, pp.1366-73, 2002.
DOI : 10.1016/S0735-1097(02)01754-0

R. Botnar, A. Buecker, A. Wiethoff, E. Parsons, J. Katoh et al., In Vivo Magnetic Resonance Imaging of Coronary Thrombosis Using a Fibrin-Binding Molecular Magnetic Resonance Contrast Agent, Circulation, vol.110, issue.11, pp.1463-1469, 2004.
DOI : 10.1161/01.CIR.0000134960.31304.87

R. Botnar, A. Perez, S. Witte, A. Wiethoff, J. Laredo et al., In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent, Circulation, vol.109, issue.16, pp.2023-2032, 2004.
DOI : 10.1161/01.CIR.0000127034.50006.C0

S. Flacke, S. Fischer, M. Scott, R. Fuhrhop, J. Allen et al., Novel MRI Contrast Agent for Molecular Imaging of Fibrin: Implications for Detecting Vulnerable Plaques, Circulation, vol.104, issue.11, pp.1280-1285, 2001.
DOI : 10.1161/hc3601.094303

A. Morawski, P. Winter, X. Yu, R. Fuhrhop, M. Scott et al., Quantitative ?magnetic resonance immunohistochemistry? with ligand-targeted19F nanoparticles, Magnetic Resonance in Medicine, vol.6, issue.6, pp.1255-62, 2004.
DOI : 10.1002/mrm.20287

R. Coleman, T. Hayek, S. Keidar, and M. Aviram, A mouse model for human atherosclerosis: Long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice, Acta Histochemica, vol.108, issue.6, pp.415-439, 2006.
DOI : 10.1016/j.acthis.2006.07.002

S. Schwartz, Z. Galis, M. Rosenfeld, and E. Falk, Plaque Rupture in Humans and Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.4, pp.705-718, 2007.
DOI : 10.1161/01.ATV.0000261709.34878.20

K. Meir and E. Leitersdorf, Atherosclerosis in the Apolipoprotein E-Deficient Mouse: A Decade of Progress, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.6, pp.1006-1020, 2004.
DOI : 10.1161/01.ATV.0000128849.12617.f4

C. Jackson, M. Bennett, E. Biessen, J. Johnson, R. Krams et al., Assessment of unstable atherosclerosis in mice Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide, Arterioscler Thromb Vasc Biol. Magn Reson Imaging, vol.2724, issue.115, pp.714-201287, 2006.

L. Chaabane, E. Canet, J. Serfaty, F. Contard, D. Guerrier et al., Microimaging of atherosclerotic plaque in animal models, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, vol.98, issue.15, pp.58-60, 2000.
DOI : 10.1007/BF02678496

M. Lipinski, V. Amirbekian, J. Frias, J. Aguinaldo, V. Mani et al., MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor, Magnetic Resonance in Medicine, vol.56, issue.3, pp.601-611, 2006.
DOI : 10.1002/mrm.20995

E. Aikawa, M. Nahrendorf, D. Sosnovik, V. Lok, F. Jaffer et al., Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease, Circulation, vol.115, issue.3, pp.377-86, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.654913

F. Jaffer, M. Nahrendorf, D. Sosnovik, K. Kelly, E. Aikawa et al., Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1, CD18): Implications on imaging of atherosclerotic plaques, pp.85-92, 2006.

J. Deguchi, M. Aikawa, C. Tung, E. Aikawa, D. Kim et al., Inflammation in Atherosclerosis: Visualizing Matrix Metalloproteinase Action in Macrophages In Vivo, Circulation, vol.114, issue.1, pp.55-62, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.619056

P. Winter, S. Caruthers, X. Yu, S. Song, J. Chen et al., Improved molecular imaging contrast agent for detection of human thrombus, Magnetic Resonance in Medicine, vol.27, issue.2, pp.411-417, 2003.
DOI : 10.1002/mrm.10532