C. Bj-pearson and . Doe, SPECIFICATION OF TEMPORAL IDENTITY IN THE DEVELOPING NERVOUS SYSTEM, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.619-666, 2004.
DOI : 10.1146/annurev.cellbio.19.111301.115142

R. Gomer, Not being the wrong size, Nature Reviews Molecular Cell Biology, vol.2, issue.1, pp.48-54, 2001.
DOI : 10.1038/35048058

R. Young, Cell differentiation in the retina of the mouse, The Anatomical Record, vol.229, issue.2, pp.199-205, 1985.
DOI : 10.1002/ar.1092120215

M. Stiemke and J. Hollyfield, Cell birthdays in Xenopus laevis retina, Differentiation, vol.58, issue.3, pp.189-93, 1995.
DOI : 10.1046/j.1432-0436.1995.5830189.x

C. Cepko, . Cp-austin, . Yang, D. Alexiades, and . Ezzeddine, Cell fate determination in the vertebrate retina., Proceedings of the National Academy of Sciences, vol.93, issue.2, pp.589-95, 1996.
DOI : 10.1073/pnas.93.2.589

D. Turner and C. Cepko, A common progenitor for neurons and glia persists in rat retina late in development, Nature, vol.328, issue.6126, pp.131-137, 1987.
DOI : 10.1038/328131a0

C. Holt, . Bertsch, W. Ellis, and . Harris, Cellular determination in the xenopus retina is independent of lineage and birth date, Neuron, vol.1, issue.1, pp.15-26, 1988.
DOI : 10.1016/0896-6273(88)90205-X

R. Wetts and . Fraser, Multipotent precursors can give rise to all major cell types of the frog retina, Science, vol.239, issue.4844, pp.1142-1147, 1988.
DOI : 10.1126/science.2449732

J. Dm-fekete, . Perez-miguelsanz, C. Ef-ryder, and . Cepko, Clonal Analysis in the Chicken Retina Reveals Tangential Dispersion of Clonally Related Cells, Developmental Biology, vol.166, issue.2, pp.666-82, 1994.
DOI : 10.1006/dbio.1994.1346

A. Jensen and . Mc-raff, Continuous Observation of Multipotential Retinal Progenitor Cells in Clonal Density Culture, Developmental Biology, vol.188, issue.2, pp.267-79, 1997.
DOI : 10.1006/dbio.1997.8645

C. Mr-alexiades and . Cepko, Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny, pp.1119-1150, 1997.

M. Cayouette, W. Poggi, and . Harris, Lineage in the vertebrate retina, Trends in Neurosciences, vol.29, issue.10, pp.563-70, 2006.
DOI : 10.1016/j.tins.2006.08.003

M. Belliveau and C. Cepko, Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina, Development, vol.126, pp.555-66, 1999.

T. Reh and . Tully, Regulation of tyrosine hydroxylase-containing amacrine cell number in larval frog retina, Developmental Biology, vol.114, issue.2, pp.463-472, 1986.
DOI : 10.1016/0012-1606(86)90210-1

D. Waid and . Sc-mcloon, Ganglion cells influence the fate of dividing retinal cells in culture, pp.1059-66, 1998.

M. Gonzalez-hoyuela, J. Barbas, and . Rodriguez-tebar, The autoregulation of retinal ganglion cell number, pp.117-141, 2001.

J. Kim, . Wu, . Lander, . Lyons, A. Matzuk et al., GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina, GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina, pp.1927-1957, 2005.
DOI : 10.1126/science.1110175

H. Wu, . Ivkovic, . Murray, . Jaramillo, . Lyons et al., Autoregulation of Neurogenesis by GDF11, Neuron, vol.37, issue.2, pp.197-207, 2003.
DOI : 10.1016/S0896-6273(02)01172-8

J. Tobin, Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases, Current Opinion in Pharmacology, vol.5, issue.3, pp.328-360, 2005.
DOI : 10.1016/j.coph.2005.01.011

A. Abdollahi, LOT1 (ZAC1/PLAGL1) and its family members: Mechanisms and functions, Journal of Cellular Physiology, vol.280, issue.1, pp.16-25, 2007.
DOI : 10.1002/jcp.20835

P. Mattar, . Britz, . Johannes, . Nieto, . Ma et al., A screen for downstream effectors of Neurogenin2 in the embryonic neocortex Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth, Dev Biol Dev Cell, vol.273, issue.11, pp.373-89711, 2004.

D. Spengler, . Villalba, C. Hoffmann, . Pantaloni, . Houssami et al., Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain, The EMBO Journal, vol.16, issue.10, pp.2814-2839, 1997.
DOI : 10.1093/emboj/16.10.2814

S. Alam, . Zinyk, C. Ma, and . Schuurmans, gene family are expressed in complementary and overlapping regions in the developing murine nervous system, Developmental Dynamics, vol.9, issue.3, pp.772-82, 2005.
DOI : 10.1002/dvdy.20577

L. Ma, J. Hocking, C. Hehr, C. Schuurmans, and S. Mcfarlane, Zac1 promotes a M??ller glial cell fate and interferes with retinal ganglion cell differentiation inXenopus retina, Developmental Dynamics, vol.130, issue.1, pp.192-202, 2007.
DOI : 10.1002/dvdy.21002

H. Hiura, Y. Obata, . Komiyama, T. Shirai, H. Kono et al., Oocyte growth-dependent progression of maternal imprinting in mice, Genes to Cells, vol.19, issue.4, pp.353-611083, 1989.
DOI : 10.1038/ng0395-316

J. De-melo, . Qiu, . Du, D. Cristante, and . Eisenstat, Dlx1,Dlx2,Pax6,Brn3b, andChx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina, The Journal of Comparative Neurology, vol.20, issue.2, pp.187-204, 2003.
DOI : 10.1002/cne.10674

R. Pearson, . Luneborg, P. Becker, and . Mobbs, Gap Junctions Modulate Interkinetic Nuclear Movement in Retinal Progenitor Cells, Journal of Neuroscience, vol.25, issue.46, pp.10803-10817, 2005.
DOI : 10.1523/JNEUROSCI.2312-05.2005

D. Chen, I. Livne-bar, . Vanderluit, . Slack, R. Agochiya et al., Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma, Cancer Cell, vol.5, issue.6, pp.539-51, 2004.
DOI : 10.1016/j.ccr.2004.05.025

M. Dyer and C. Cepko, (Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina, Development, vol.127, pp.573593-605, 2000.

E. Levine, . Close, . Fero, T. Ostrovsky, and . Reh, (Kip1) regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina, Dev Biol, vol.219, pp.27299-314, 2000.

M. Watanabe, K. Hitomi, . Van-der-wee, . Rothenberg, . Fisher et al., The Pros and Cons of Apoptosis Assays for Use in the Study of Cells, Tissues, and Organs, Microscopy and Microanalysis, vol.8, issue.05, pp.375-91, 2002.
DOI : 10.1017/S1431927602010346

Y. Pei and J. Rhodin, The prenatal development of the mouse eye, The Anatomical Record, vol.169, issue.1, pp.105-130, 1970.
DOI : 10.1002/ar.1091680109

J. Silver and . Hughes, The role of cell death during morphogenesis of the mammalian eye 39. I Hero: Optic fissure closure in the normal cinnamon mouse. An ultrastructural study N Duenker: Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina, J Morphol Invest Ophthalmol Vis Sci Int Rev Cytol, vol.140, issue.245, pp.159-70197, 1973.

T. Inoue, Y. Hojo, Y. Bessho, . Tano, . Lee et al., Math3 and NeuroD regulate amacrine cell fate specification in the retina, Development, vol.129, pp.831-873, 2002.

S. Li, . Mo, . Yang, . Price, M. Shen et al., Foxn4 Controls the Genesis of Amacrine and Horizontal Cells by Retinal Progenitors, Neuron, vol.43, issue.6, pp.795-807, 2004.
DOI : 10.1016/j.neuron.2004.08.041

E. Morrow, . Furukawa, . Lee, B. Cepko, T. Gumuscu et al., NeuroD regulates multiple functions in the developing neural retina in rodent Retinal neurons regulate proliferation of postnatal progenitors and Muller glia in the rat retina via TGF{beta} signaling, pp.23-363015, 1999.

P. Leveen, . Larsson, . Ehinger, . Cilio, . Sundler et al., Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable, Blood, vol.100, issue.2, pp.560-568, 2002.
DOI : 10.1182/blood.V100.2.560

T. Mori, . Tanaka, . Buffo, . Wurst, M. Kuhn et al., Inducible gene deletion in astroglia and radial glia-A valuable tool for functional and lineage analysis, Glia, vol.24, issue.Part 6, pp.21-34, 2006.
DOI : 10.1002/glia.20350

J. Zhang, . Gray, . Wu, . Leone, C. Rowan et al., Rb regulates proliferation and rod photoreceptor development in the mouse retina, Nature Genetics, vol.36, issue.4, pp.351-60, 2004.
DOI : 10.1038/ng1318

D. Macpherson, . Sage, . Kim, . Ho, T. Me-mclaughlin et al., Cell type-specific effects of Rb deletion in the murine retina, Genes & Development, vol.18, issue.14, pp.1681-94, 2004.
DOI : 10.1101/gad.1203304

W. Jacobs, F. Walsh, and . Miller, Neuronal Survival and p73/p63/p53: A Family Affair, The Neuroscientist, vol.58, issue.10, pp.443-55, 2004.
DOI : 10.1177/1073858404263456

L. Li, A. Liu, F. Ross, . Gomes, L. Sousa-vde et al., PTEN regulation of neural development and CNS stem cells, Journal of Cellular Biochemistry, vol.280, issue.1, pp.24-32, 2003.
DOI : 10.1002/jcb.10312

M. Dyer and C. Cepko, and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations, J Neurosci, vol.21, pp.27-14259, 2001.

T. Valente, Expression pattern of Zac1 mouse gene, a new zinc-finger protein that regulates apoptosis and cellular cycle arrest, in both adult brain and along development, Mechanisms of Development, vol.108, issue.1-2, pp.207-218, 2001.
DOI : 10.1016/S0925-4773(01)00492-0

T. Tsuda, . Markova, . Wang, . Evangelisti, . Tc-pan et al., Zinc finger proteinZac1 is expressed in chondrogenic sites of the mouse, Developmental Dynamics, vol.291, issue.2, pp.340-348, 2004.
DOI : 10.1002/dvdy.10439

T. Valente and . Junyent, Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: Differential phenotype of the Zac1-expressing cells during development, Developmental Dynamics, vol.21, issue.2, pp.667-79, 2005.
DOI : 10.1002/dvdy.20373

S. Baker and . Mckinnon, Tumour-suppressor function in the nervous system, Nature Reviews Cancer, vol.4, issue.3, pp.184-96, 2004.
DOI : 10.1038/nrc1297

M. Dyer and C. Cepko, The p57Kip2 cyclin kinase inhibitor is expressed by a restricted set of amacrine cells in the rodent retina, The Journal of Comparative Neurology, vol.212, issue.4, pp.601-615, 2001.
DOI : 10.1002/1096-9861(20010122)429:4<601::AID-CNE7>3.0.CO;2-V

A. Franke, C. Gubbe, N. Beier, and . Duenker, Transforming growth factor-?? and bone morphogenetic proteins: Cooperative players in chick and murine programmed retinal cell death, The Journal of Comparative Neurology, vol.46, issue.3, pp.263-78, 2006.
DOI : 10.1002/cne.20869

J. Hatakeyama, . Tomita, R. Inoue, S. Kageyama, . Kanekar et al., Roles of homeobox and bHLH genes in specification of a retinal cell type Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis, pp.1313-224821, 1998.

Y. Li, J. Wang, . Lee, and . Gao, MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila, Genes & Development, vol.20, issue.20, pp.2793-805, 2006.
DOI : 10.1101/gad.1466306

A. Perea-gomez, F. Vella, M. Shawlot, C. Oulad-abdelghani, C. Chazaud et al., Nodal Antagonists in the Anterior Visceral Endoderm Prevent the Formation of Multiple Primitive Streaks, Developmental Cell, vol.3, issue.5, pp.745-56, 2002.
DOI : 10.1016/S1534-5807(02)00321-0

E. Cau, . Gradwohl, . Casarosa, F. Kageyama, and . Guillemot, Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium, Development, vol.127, pp.2323-2355, 2000.

G. Gradwohl, C. Fode, and F. Guillemot, Restricted Expression of a Novel Murineatonal-Related bHLH Protein in Undifferentiated Neural Precursors, Developmental Biology, vol.180, issue.1, pp.227-268, 1996.
DOI : 10.1006/dbio.1996.0297

K. Takebayashi, C. Takahashi, . Yokota, . Tsuda, . Nakanishi et al., Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal, The EMBO Journal, vol.16, issue.2, pp.384-95836, 1995.
DOI : 10.1093/emboj/16.2.384