D. Monsempes, J. P. Blanot, M. Brouard, and . Arthur, Synthesis of mosaic 280 peptidoglycan cross-bridges by hybrid peptidoglycan assembly pathways in gram-positive 281 bacteria, J Biol Chem, vol.279, pp.41546-56, 2004.

A. Bateman and M. Bycroft, The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD), Journal of Molecular Biology, vol.299, issue.4, pp.1113-1122, 2000.
DOI : 10.1006/jmbi.2000.3778

C. Beliveau, C. Potvin, J. Trudel, A. Asselin, and G. Bellemare, Cloning, sequencing, and expression in Escherichia coli of a Streptococcus faecalis autolysin., Journal of Bacteriology, vol.173, issue.18, pp.5619-5642, 1991.
DOI : 10.1128/jb.173.18.5619-5623.1991

A. Bera, S. Herbert, A. Jakob, W. Vollmer, and F. Gotz, Why are pathogenic 288 staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the 289 major determinant for lysozyme resistance of Staphylococcus aureus, Mol Microbiol, vol.287, issue.55, pp.778-87, 2005.

I. G. Boneca, The role of peptidoglycan in pathogenesis, Current Opinion in Microbiology, vol.8, issue.1, pp.46-53, 2005.
DOI : 10.1016/j.mib.2004.12.008

T. Briese and R. Hakenbeck, Interaction of the pneumococcal amidase with lipoteichoic acid and choline, European Journal of Biochemistry, vol.157, issue.2, pp.417-444, 1985.
DOI : 10.1016/0003-2697(81)90179-2

D. Cabanes, O. Dussurget, P. Dehoux, and P. Cossart, Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence, Molecular Microbiology, vol.175, issue.6, pp.1601-1615, 2004.
DOI : 10.1111/j.1365-2958.2003.03945.x

A. Chastanet, J. Fert, and T. Msadek, Comparative genomics reveal novel heat 299 shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria, 2003.
DOI : 10.1046/j.1365-2958.2003.03355.x

. Delmas, The capsid of infectious bursal disease virus contains several small 303 peptides arising from the maturation process of pVP2, J Virol, vol.76, pp.2393-402, 2002.

D. L. Dolinger, L. Daneo-moore, and G. D. Shockman, The second peptidoglycan hydrolase of Streptococcus faecium ATCC 9790 covalently binds penicillin., Journal of Bacteriology, vol.171, issue.8, pp.4355-61, 1989.
DOI : 10.1128/jb.171.8.4355-4361.1989

S. J. and D. L. Popham, Structure and synthesis of cell wall, spore cortex, 312 teichoic acids, S-layers and capsules Bacillus subtilis and its closest relatives: from genes to cells, 20. 311 13. Foster, pp.314-310, 2001.

J. M. Ghuysen, E. Bricas, M. Lache, and M. Leyh-bouille, Structure of the cell walls of Micrococcus lysodeikticus. III. Isolation of a new peptide dimer, N??-[L-alanyl-??-(??-D-glutamylglycine)]-L-lysyl-D-alanine, Biochemistry, vol.7, issue.4, pp.1450-60, 1968.
DOI : 10.1021/bi00844a030

G. J. Horsburgh, A. Atrih, M. P. Williamson, and S. J. Foster, LytG of Bacillus 320 subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase, Biochemistry, vol.42, pp.321257-64, 2003.

T. Kawamura and G. D. Shockman, Purification and some properties of the 323 endogenous, autolytic N-acetylmuramoylhydrolase of Streptococcus faecium, a bacterial 324 glycoenzyme, J Biol Chem, vol.258, pp.9514-9535, 1983.

E. Milohanic, R. Jonquieres, P. Cossart, P. Berche, and J. L. Gaillard, The 326, 2001.

X. Qin, K. V. Singh, Y. Xu, G. M. Weinstock, and B. E. Murray, Effect of 329 disruption of a gene encoding an autolysin of Enterococcus faecalis OG1RF, Antimicrob, vol.328, issue.330, 1998.

D. F. Sahm, J. Kissinger, M. S. Gilmore, P. R. Murray, R. Mulder et al., In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis., Antimicrobial Agents and Chemotherapy, vol.33, issue.9, pp.1588-91, 1989.
DOI : 10.1128/AAC.33.9.1588

K. H. Schleifer and O. Kandler, Peptidoglycan types of bacterial cell walls and 335 their taxonomic implications, Bacteriol Rev, vol.334, issue.36, pp.407-77, 1972.

. Kok, AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal 338 number of LysM domains for proper functioning, Febs J, vol.272, pp.2854-68, 2005.

H. Strating and A. J. Clarke, Differentiation of Bacterial Autolysins by Zymogram Analysis, Analytical Biochemistry, vol.291, issue.1, pp.149-54, 2001.
DOI : 10.1006/abio.2001.5007

W. Weidel and H. Pelzer, Bagshaped macromolecules -a new outlook on 342 bacterial cell walls, Adv Enzymol Relat Areas Mol Biol, vol.26, pp.193-232, 1964.

N. Xu, Z. H. Huang, B. L. De-jonge, and D. A. Gage, Structural Characterization of Peptidoglycan Muropeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry and Postsource Decay Analysis, Analytical Biochemistry, vol.248, issue.1, pp.7-14, 1997.
DOI : 10.1006/abio.1997.2073

A. Purification, Crude extract of BL21 DE3 (pREP4GroESL) transformed with 349 pET2818 after IPTG induction (15 µg of protein); lane 2, crude extract of BL21 DE3 350 (pREP4GroESL) transformed with pML118 after IPTG induction (15 µg); lane 3, protein fraction 351 eluting from metal affinity chromatography with 100 mM imidazole (5 µg); lane 4, protein 352 fraction eluted with 100-200 mM NaCl from the anion-exchange column (4 µg)

M. ;. Glcnac and . Glcnac, The major muropeptide 360 monomers generated by mutanolysin (peak 2) and AtlA (peak 2') were analyzed by MS/MS 361 yielding fragmentation patterns (A) and (B), respectively. The m/z values of the most informative 362 ions are boxed and the inferred structures are indicated with a one-letter code: M, MurNAc; M R , 363 reduced MurNAc, p.364

K. Full and . Atla, 10 µg, lane 1) was digested with proteinase K and aliquots were 372 withdrawn after 1 min (lane 2), 5 min (lane 3) or 10 min (lane 4). The three polypeptides A, B C 373 (indicated by an arrow) were subjected to N-terminal sequencing. (D) Zymogram showing cell 374

. Wall, Proteins were separated by SDS-PAGE in a gel containing 0, pp.2-375