J. Adams, Z. P. Chen, B. J. Van-denderen, C. J. Morton, M. W. Parker et al., Intrasteric control of AMPK via the ??1 subunit AMP allosteric regulatory site, Protein Science, vol.13, issue.1, pp.155-65, 2004.
DOI : 10.1110/ps.03340004

J. Y. Altarejos, M. Taniguchi, A. S. Clanachan, and G. D. Lopaschuk, Myocardial Ischemia Differentially Regulates LKB1 and an Alternate 5'-AMP-activated Protein Kinase Kinase, Journal of Biological Chemistry, vol.280, issue.1, pp.183-90, 2004.
DOI : 10.1074/jbc.M411810200

Y. Athea, V. Veksler, B. Viollet, A. Garnier, S. Vaulont et al., Knock out of the alpah2 subunit of AMP activated protein kinase ( AMPK) alters cardiac oxidative capacity and substrate utilization, Circulation, vol.108, p.296, 2003.

J. A. Balschi, H. Shen, M. C. Madden, J. O. Hai, E. L. Bradley et al., Model Systems for Modulating the Free Energy of ATP Hydrolysis in Normoxically Perfused Rat Hearts, Journal of Molecular and Cellular Cardiology, vol.29, issue.11, pp.3123-3133
DOI : 10.1006/jmcc.1997.0539

E. Bassenge, O. Sommer, M. Schwemmer, R. Bunger, and +. , Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state, Amer J Physiol Heart Circ Phy, vol.279, issue.5, pp.2431-2438, 2000.

J. A. Bittl and J. S. Ingwall, Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart, Journal of Biological Chemistry, vol.260, issue.85, pp.3512-3517

E. Boehm, R. Ventura-clapier, P. Mateo, P. Lechene, and V. Veksler, Glycolysis Supports Calcium Uptake by the Sarcoplasmic Reticulum in Skinned Ventricular Fibres of Mice Deficient in Mitochondrial and Cytosolic Creatine Kinase, Journal of Molecular and Cellular Cardiology, vol.32, issue.6, pp.891-902, 2000.
DOI : 10.1006/jmcc.2000.1130

D. Burkhoff, R. Weiss, S. Schulman, R. Kalil, T. Wannenburg et al., Influence of Metabolic Substrate on Rat Heart Function and Metabolism at Different Coronary Flows, American Journal of Physiology, vol.261, issue.3, pp.741-750

A. C. Cave, J. S. Ingwall, J. Friedrich, R. L. Liao, K. W. Saupe et al., ATP Synthesis During Low-Flow Ischemia : Influence of Increased Glycolytic Substrate, Circulation, vol.101, issue.17, pp.2090-2096, 2000.
DOI : 10.1161/01.CIR.101.17.2090

W. N. Chen, J. Hoerter, and M. Gueron, A Comparison of AMP Degradation in the Perfused Rat Heart during 2-Deoxy-D-glucose perfusion and Anoxia. Part I: The Release of Adenosine and Inosine, Journal of Molecular and Cellular Cardiology, vol.28, issue.10, pp.2163-2174
DOI : 10.1006/jmcc.1996.0208

H. Clark, D. Carling, and D. Saggerson, Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids, European Journal of Biochemistry, vol.223, issue.11, pp.2215-2239, 2004.
DOI : 10.1111/j.1432-1033.2004.04151.x

H. R. Cross, L. H. Opie, G. K. Radda, C. , and K. , Is a High Glycogen Content Beneficial or Detrimental to the Ischemic Rat Heart? : A Controversy Resolved, Circulation Research, vol.78, issue.3, pp.482-491
DOI : 10.1161/01.RES.78.3.482

T. Daniel, D. Carling, and +. , Functional Analysis of Mutations in the gamma 2 Subunit of AMP-activated Protein Kinase Associated with Cardiac Hypertrophy and Wolff-Parkinson-White Syndrome, Journal of Biological Chemistry, vol.277, issue.52, pp.51017-51041, 2002.
DOI : 10.1074/jbc.M207093200

J. R. Dyck and G. D. Lopaschuk, AMPK alterations in cardiac physiology and pathology: enemy or ally?, The Journal of Physiology, vol.97, issue.1, 2006.
DOI : 10.1113/jphysiol.2006.109389

E. T. Fossel and H. Hoefeler, Complete inhibition of creatine kinase in isolated perfused rat hearts, American Journal of Physiology, vol.252, issue.87, pp.124-130

M. Frederich, J. A. Balschi, and +. , The Relationship between AMP-activated Protein Kinase Activity and AMP Concentration in the Isolated Perfused Rat Heart, Journal of Biological Chemistry, vol.277, issue.3, pp.1928-1960, 2002.
DOI : 10.1074/jbc.M107128200

M. Frederich, L. Zhang, and J. A. Balschi, Hypoxia and AMP independently regulate AMP-activated protein kinase activity in heart, AJP: Heart and Circulatory Physiology, vol.288, issue.5, pp.2412-2433, 2005.
DOI : 10.1152/ajpheart.00558.2004

J. F. Goudemant, L. Vanderelst, B. Dupont, Y. Vanhaverbeke, and R. N. Muller, pH and temperature effects on kinetics of creatine kinase in aqueous solution and in isovolumic perfused heart. A31P nuclear magnetization transfer study, NMR in Biomedicine, vol.276, issue.3, pp.101-110
DOI : 10.1002/nbm.1940070302

L. A. Gustafson, C. J. Zuurbier, J. E. Bassett, J. P. Barends, J. H. Van-beek et al., Increased hypoxic stress decreases AMP hydrolysis in rabbit heart, Cardiovascular Research, vol.44, issue.2, pp.333-376, 1999.
DOI : 10.1016/S0008-6363(99)00207-2

J. P. Headrick, C. S. Emerson, S. S. Berr, R. M. Berne, and G. P. Matherne, Interstitial adenosine and cellular metabolism during beta-adrenergic stimulation of the in situ rabbit heart, Cardiovasc Res, vol.31, issue.96, pp.699-710

J. P. Headrick, J. Peart, B. Hack, A. Flood, and G. P. Matherne, Functional properties and responses to ischaemia-reperfusion in Langendorff perfused mouse heart, Experimental Physiology, vol.102, issue.suppl., pp.703-716, 2001.
DOI : 10.1111/j.1469-445X.2001.tb00035.x

J. Hoerter, M. D. Gonzalez-barroso, E. Couplan, P. Mateo, C. Gelly et al., Mitochondrial Uncoupling Protein 1 Expressed in the Heart of Transgenic Mice Protects Against Ischemic-Reperfusion Damage, Circulation, vol.110, issue.5, pp.528-561, 2004.
DOI : 10.1161/01.CIR.0000137824.30476.0E

J. A. Hoerter, C. Lauer, G. Vassort, and M. Guéron, Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a HAL author manuscript inserm-00151019, version 1, p.31

F. Joubert, J. Mazet, P. Mateo, and J. A. Hoerter, 31P NMR Detection of Subcellular Creatine Kinase Fluxes in the Perfused Rat Heart. CONTRACTILITY MODIFIES ENERGY TRANSFER PATHWAYS, Journal of Biological Chemistry, vol.277, issue.21, pp.18469-76, 2002.
DOI : 10.1074/jbc.M200792200

K. G. Kolocassides, M. Galinanes, D. J. Hearse, and +. , Dichotomy of Ischemic Preconditioning : Improved Postischemic Contractile Function Despite Intensification of Ischemic Contracture, Circulation, vol.93, issue.9, pp.1725-1733
DOI : 10.1161/01.CIR.93.9.1725

K. G. Kolocassides, A. M. Seymour, M. Galinanes, D. J. Hearse, and +. , Paradoxical Effect of Ischemic Preconditioning on Ischemic Contracture? NMR Studies of Energy Metabolism and Intracellular pH in the Rat Heart, Journal of Molecular and Cellular Cardiology, vol.28, issue.5, pp.1045-1057
DOI : 10.1006/jmcc.1996.0097

C. Korvald, O. P. Elvenes, and T. Myrmel, Myocardial substrate metabolism influences left ventricular energetics in vivo, Am J Physiol Heart Circ Physiol, vol.278, pp.1345-51, 2000.

K. Kroll, D. J. Kinzie, and L. A. Gustafson, Open-system kinetics of myocardial phosphoenergetics during coronary underperfusion, American Journal of Physiology Heart and Circulatory Physiology, vol.41, issue.6, pp.2563-2576

N. Kudo, A. J. Barr, R. L. Barr, S. Desai, and G. D. Lopaschuk, High Rates of Fatty Acid Oxidation during Reperfusion of Ischemic Hearts Are Associated with a Decrease in Malonyl-CoA Levels Due to an Increase in 5'-AMP-activated Protein Kinase Inhibition of Acetyl-CoA Carboxylase, Journal of Biological Chemistry, vol.270, issue.29, pp.17513-17520
DOI : 10.1074/jbc.270.29.17513

N. Kudo, J. G. Gillespie, L. Kung, L. A. Witters, R. Schulz et al., Characterization of 5???AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1301, issue.1-2
DOI : 10.1016/0005-2760(96)00013-6

J. W. Lawson and R. L. Veech, Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions, Journal of Biological Chemistry, vol.254, issue.79, pp.6528-6537

H. Leon, L. L. Atkinson, J. Sawicka, K. Strynadka, G. D. Lopaschuk et al., Pyruvate prevents cardiac dysfunction and AMP-activated protein kinase activation by hydrogen peroxide in isolated rat hearts, Canadian Journal of Physiology and Pharmacology, vol.82, issue.6, pp.409-425, 2004.
DOI : 10.1139/y04-050

S. G. Lloyd, P. Wang, H. Zeng, and J. C. Chatham, Impact of low-flow ischemia on substrate oxidation and glycolysis in the isolated perfused rat heart, AJP: Heart and Circulatory Physiology, vol.287, issue.1, 2004.
DOI : 10.1152/ajpheart.00983.2003

R. T. Mallet and J. Sun, Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics, Cardiovascular Research, vol.42, issue.1, pp.149-161
DOI : 10.1016/S0008-6363(98)00300-9

I. Momken, P. Lechene, N. Koulmann, D. Fortin, P. Mateo et al., Impaired voluntary running capacity of creatine kinase-deficient mice, The Journal of Physiology, vol.194, issue.257, pp.951-64, 2005.
DOI : 10.1113/jphysiol.2005.086397

URL : https://hal.archives-ouvertes.fr/inserm-00290115

J. R. Neely and L. W. Grotyohann, Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts, Circulation Research, vol.55, issue.6, pp.816-824
DOI : 10.1161/01.RES.55.6.816

S. Neubauer, M. Horn, M. Cramer, K. Harre, J. B. Newell et al., Myocardial Phosphocreatine-to-ATP Ratio Is a Predictor of Mortality in Patients With Dilated Cardiomyopathy, Circulation, vol.96, issue.7, pp.2190-2196
DOI : 10.1161/01.CIR.96.7.2190

M. Ponticos, Q. L. Lu, J. E. Morgan, D. G. Hardie, T. A. Partridge et al., Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle, The EMBO Journal, vol.17, issue.6, pp.1688-99, 1998.
DOI : 10.1093/emboj/17.6.1688

R. R. Russell, R. 3rd, G. I. Bergeron, L. H. Shulman, and +. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR, Am J Physiol, vol.277, pp.643-652, 1999.

R. R. Russell, J. 3rd, D. L. Li, M. Coven, C. Pypaert et al., AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury, Journal of Clinical Investigation, vol.114, issue.4, pp.495-503, 2004.
DOI : 10.1172/JCI19297

N. Sambandam and G. D. Lopaschuk, AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart, Progress in Lipid Research, vol.42, issue.3, pp.238-56, 2003.
DOI : 10.1016/S0163-7827(02)00065-6

K. Schwartz, K. Boheler, D. Delabastie, A. Lompre, and J. Mercadier, Switches in Cardiac Muscle Gene Expression as a Result HAL author manuscript inserm-00151019, version 1, p.33

A. Skladanowski and A. Newby, Partial Purification and Properties of an AMP-Specific Soluble 5'-Nucleotidase from Pigeon Heart|, Biochemical Journal, pp.117-122, 1990.

S. Soboll and R. Bunger, Compartmentation of Adenine Nucleotides in the Isolated Working Guinea Pig Heart Stimulated by Noradrenaline, Hoppe-Seyler??s Zeitschrift f??r physiologische Chemie, vol.362, issue.1, pp.125-132
DOI : 10.1515/bchm2.1981.362.1.125

C. Steenberger, E. Murphy, L. Levy, and R. E. London, Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart, Circulation Research, vol.60, issue.5, pp.700-707
DOI : 10.1161/01.RES.60.5.700

S. C. Stein, A. Woods, N. A. Jones, M. D. Davison, and D. Carling, The regulation of AMP-activated protein kinase by phosphorylation, Biochem J 345 Pt, vol.3, pp.437-480, 2000.

V. Stepanov, P. Mateo, B. Gillet, J. C. Beloeil, P. Lechene et al., Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart, American Journal of Physiology Cell Physiology, vol.42, issue.4, pp.1397-1408

E. B. Taylor, W. J. Ellingson, J. D. Lamb, D. G. Chesser, C. L. Compton et al., Evidence against regulation of AMP-activated protein kinase and LKB1/STRAD/MO25 activity by creatine phosphate, AJP: Endocrinology and Metabolism, vol.290, issue.4, pp.661-670, 2006.
DOI : 10.1152/ajpendo.00313.2005

V. I. Veksler, P. Lechene, K. Matrougui, and R. Ventura-clapier, Rigor tension in single skinned rat cardiac cell: role of myofibrillar creatine kinase, Cardiovascular Research, vol.36, issue.3, pp.354-62, 1997.
DOI : 10.1016/S0008-6363(97)00178-8

R. Ventura-clapier and G. Vassort, Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle, Pfl???gers Archiv European Journal of Physiology, vol.8, issue.2, pp.157-161
DOI : 10.1007/BF00585412

R. Ventura-clapier and V. Veksler, Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness, Circulation Research, vol.74, issue.5, pp.920-929, 1994.
DOI : 10.1161/01.RES.74.5.920

R. Ventura-clapier, V. Veksler, and J. A. Hoerter, Myofibrillar creatine kinase and cardiac contraction, Molecular and Cellular Biochemistry, vol.133, pp.125-144
DOI : 10.1007/978-1-4615-2612-4_10

J. F. Nicolas, A. Wojtaszewski, D. Kahn, F. C. Carling, M. J. Schuit et al., Vaulont, and +. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity, J Clin Invest, vol.111, pp.91-99, 2003.

Y. Xing, N. Musi, N. Fujii, L. Zou, I. Luptak et al., Glucose Metabolism and Energy Homeostasis in Mouse Hearts Overexpressing Dominant Negative ??2 Subunit of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.278, issue.31, pp.28372-28379, 2003.
DOI : 10.1074/jbc.M303521200

L. H. Young, J. Li, S. J. Baron, and R. R. Russell, AMP-Activated Protein Kinase: A Key Stress Signaling Pathway in the Heart, Trends in Cardiovascular Medicine, vol.15, issue.3, pp.110-118, 2005.
DOI : 10.1016/j.tcm.2005.04.005

E. Zarrinpashneh, K. Carvajal, C. Beauloye, A. Ginion, P. Mateo et al., Role of the alpha2 isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia, American Journal Physiology Heart

M. Zhou, B. Z. Lin, S. Coughlin, G. Vallega, P. F. Pilch et al., UCP-3 expression in skeletal muscle: effects of exercise, hypoxia, and AMP-activated protein kinase, Am J Physiol Endocrinol Metab, vol.279, pp.622-631, 2000.