E. Buhl, N. Jessen, R. Pold, T. Ledet, A. Flyvbjerg et al., Long-Term AICAR Administration Reduces Metabolic Disturbances and Lowers Blood Pressure in Rats Displaying Features of the Insulin Resistance Syndrome, Diabetes, vol.51, issue.7, pp.2199-206, 2002.
DOI : 10.2337/diabetes.51.7.2199

Z. Chen, K. Mitchelhill, B. Michell, D. Stapleton, I. Rodriguez-crespo et al., AMP-activated protein kinase phosphorylation of endothelial NO synthase, FEBS Letters, vol.100, issue.3, pp.285-294, 1999.
DOI : 10.1016/S0014-5793(98)01705-0

J. Corton, J. Gillespie, S. Hawley, and D. Hardie, 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells?, European Journal of Biochemistry, vol.223, issue.2, pp.558-565, 1995.
DOI : 10.1016/0014-5793(94)01006-4

C. Da-silva, R. Jarzyna, A. Specht, and E. Kaczmarek, Extracellular Nucleotides and Adenosine Independently Activate AMP-Activated Protein Kinase in Endothelial Cells: Involvement of P2 Receptors and Adenosine Transporters, Circulation Research, vol.98, issue.5, pp.39-47, 2006.
DOI : 10.1161/01.RES.0000215436.92414.1d

J. Daly, W. Padgett, M. Shamim, P. Butts-lamb, and J. Waters, 1,3-Dialkyl-8-(p-sulfophenyl)xanthines: potent water-soluble antagonists for A1- and A2-adenosine receptors, Journal of Medicinal Chemistry, vol.28, issue.4, pp.487-492, 1985.
DOI : 10.1021/jm00382a018

B. Davis, Z. Xie, B. Viollet, and M. Zou, Activation of the AMP-Activated Kinase by Antidiabetes Drug Metformin Stimulates Nitric Oxide Synthesis In Vivo by Promoting the Association of Heat Shock Protein 90 and Endothelial Nitric Oxide Synthase, Diabetes, vol.55, issue.2, pp.496-505, 2006.
DOI : 10.2337/diabetes.55.02.06.db05-1064

A. Evans, D. Hardie, A. Galione, C. Peers, P. Kumar et al., AMP-Activated Protein Kinase Couples Mitochondrial Inhibition by Hypoxia to Cell-Specific Ca2+ Signalling Mechanisms in Oxygensensing Cells, Novartis Found Symp, vol.272, pp.234-252, 2006.
DOI : 10.1002/9780470035009.ch18

A. Evans, K. Mustard, C. Wyatt, C. Peers, M. Dipp et al., Does AMP-activated Protein Kinase Couple Inhibition of Mitochondrial Oxidative Phosphorylation by Hypoxia to Calcium Signaling in O2-sensing Cells?, Journal of Biological Chemistry, vol.280, issue.50, pp.41504-41511, 2005.
DOI : 10.1074/jbc.M510040200

D. Hardie, J. Scott, D. Pan, and E. Hudson, Management of cellular energy by the AMP-activated protein kinase system, FEBS Letters, vol.50, issue.1, pp.113-120, 2003.
DOI : 10.1016/S0014-5793(03)00560-X

M. Igata, H. Motoshima, K. Tsuruzoe, K. Kojima, T. Matsumura et al., Adenosine Monophosphate-Activated Protein Kinase Suppresses Vascular Smooth Muscle Cell Proliferation Through the Inhibition of Cell Cycle Progression, Circulation Research, vol.97, issue.8, pp.837-881, 2005.
DOI : 10.1161/01.RES.0000185823.73556.06

S. Jorgensen, B. Viollet, F. Andreelli, C. Frosig, J. Birk et al., Knockout of the ??2 but Not ??1 5'-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-??-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle, Journal of Biological Chemistry, vol.279, issue.2, pp.1070-1079, 2004.
DOI : 10.1074/jbc.M306205200

C. Lewis, S. Hourani, C. Long, and M. Collis, Characterization of adenosine receptors in the rat isolated aorta, General Pharmacology: The Vascular System, vol.25, issue.7, pp.1381-1387, 1994.
DOI : 10.1016/0306-3623(94)90162-7

J. Majithiya and R. Balaraman, Metformin reduces blood pressure and restores endothelial function in aorta of streptozotocin-induced diabetic rats, Life Sciences, vol.78, issue.22, pp.2615-2624, 2006.
DOI : 10.1016/j.lfs.2005.10.020

V. Morrow, F. Foufelle, J. Connell, J. Petrie, G. Gould et al., Direct Activation of AMP-activated Protein Kinase Stimulates Nitric-oxide Synthesis in Human Aortic Endothelial Cells, Journal of Biological Chemistry, vol.278, issue.34, pp.31629-31639, 2003.
DOI : 10.1074/jbc.M212831200

D. Nagata, M. Mogi, and K. Walsh, AMP-activated Protein Kinase (AMPK) Signaling in Endothelial Cells Is Essential for Angiogenesis in Response to Hypoxic Stress, Journal of Biological Chemistry, vol.278, issue.33, pp.31000-31006, 2003.
DOI : 10.1074/jbc.M300643200

L. Rubin, L. Magliola, X. Feng, A. Jones, and C. Hale, Metabolic activation of AMP kinase in vascular smooth muscle, Journal of Applied Physiology, vol.98, issue.1, pp.296-306, 2005.
DOI : 10.1152/japplphysiol.00075.2004

N. Sambandam and G. Lopaschuk, AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart, Progress in Lipid Research, vol.42, issue.3, pp.238-256, 2003.
DOI : 10.1016/S0163-7827(02)00065-6

A. Somlyo and A. Somlyo, Ca2+ Sensitivity of Smooth Muscle and Nonmuscle Myosin II: Modulated by G Proteins, Kinases, and Myosin Phosphatase, Physiological Reviews, vol.83, issue.4, pp.1325-58, 2003.
DOI : 10.1152/physrev.00023.2003

G. Thorne, Y. Ishida, and R. Paul, Hypoxic vasorelaxation: Ca2+-dependent and Ca2+-independent mechanisms, Cell Calcium, vol.36, issue.3-4, pp.201-209, 2004.
DOI : 10.1016/j.ceca.2004.02.018

B. Viollet, F. Andreelli, S. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-98, 2003.
DOI : 10.1172/JCI16567

R. Wardle, M. Gu, Y. Ishida, and R. Paul, Ca2+-desensitizing hypoxic vasorelaxation: pivotal role for the myosin binding subunit of myosin phosphatase (MYPT1) in, 2006.

L. Française-contre and . Myopathies, Fondation de France and the European Union Contracts n°LSHM-CT-2005-018833/EUGeneHeart and LSHM-CT-2004-005272/exgenesis