B. Kahn, T. Alquier, D. Carling, and D. Hardie, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metabolism, vol.1, issue.1, pp.15-25, 2005.
DOI : 10.1016/j.cmet.2004.12.003

L. Fryer and D. Carling, AMP-activated protein kinase and the metabolic syndrome, Biochemical Society Transactions, vol.33, issue.2, pp.362-666, 2005.
DOI : 10.1042/BST0330362

D. Hardie, J. Scott, D. Pan, and E. Hudson, Management of cellular energy by the AMP-activated protein kinase system, FEBS Letters, vol.50, issue.1, pp.113-120, 2003.
DOI : 10.1016/S0014-5793(03)00560-X

P. Cheung, I. Salt, S. Davies, D. Hardie, and D. Carling, Characterization of AMP-activated protein kinase ??-subunit isoforms and their role in AMP binding, Biochemical Journal, vol.346, issue.3, pp.659-669, 2000.
DOI : 10.1042/bj3460659

N. Sambandam and G. Lopaschuk, AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart, Progress in Lipid Research, vol.42, issue.3, pp.238-256, 2003.
DOI : 10.1016/S0163-7827(02)00065-6

L. Hue, C. Beauloye, L. Bertrand, S. Horman, U. Krause et al., New targets of AMP-activated protein kinase, Biochemical Society Transactions, vol.31, issue.1, pp.213-215, 2003.
DOI : 10.1042/bst0310213

R. Russell, R. Bergeron, G. Shulman, and L. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR, Am J Physiol, vol.277, pp.643-649, 1999.

A. Marsin, L. Bertrand, M. Rider, J. Deprez, C. Beauloye et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Current Biology, vol.10, issue.20, pp.1247-1255, 2000.
DOI : 10.1016/S0960-9822(00)00742-9

R. Tian, N. Musi, D. Agostino, J. Hirshman, M. Goodyear et al., Increased Adenosine Monophosphate-Activated Protein Kinase Activity in Rat Hearts With Pressure-Overload Hypertrophy, Circulation, vol.104, issue.14, pp.1664-1669, 2001.
DOI : 10.1161/hc4001.097183

D. Coven, X. Hu, L. Cong, R. Bergeron, G. Shulman et al., Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise, American Journal of Physiology - Endocrinology And Metabolism, vol.285, issue.3, pp.629-636, 2003.
DOI : 10.1152/ajpendo.00171.2003

R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima et al., Adiponectin-mediated modulation of hypertrophic signals in the heart, Nature Medicine, vol.104, issue.12, pp.1384-1393, 2004.
DOI : 10.1074/jbc.270.29.17513

R. Russell, J. Li, D. Coven, M. Pypaert, C. Zechner et al., AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury, Journal of Clinical Investigation, vol.114, issue.4, pp.495-503, 2004.
DOI : 10.1172/JCI19297

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC503766

Y. Xing, N. Musi, N. Fujii, L. Zou, I. Luptak et al., Glucose Metabolism and Energy Homeostasis in Mouse Hearts Overexpressing Dominant Negative ??2 Subunit of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.278, issue.31, pp.28372-28377, 2003.
DOI : 10.1074/jbc.M303521200

R. Reznick and G. Shulman, The role of AMP-activated protein kinase in mitochondrial biogenesis, The Journal of Physiology, vol.25, issue.1, pp.33-39, 2006.
DOI : 10.1113/jphysiol.2006.109512

B. Viollet, F. Andreelli, S. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-98, 2003.
DOI : 10.1172/JCI16567

E. Zarrinpashneh, K. Carjaval, C. Beauloye, A. Ginion, P. Mateo et al., Role of the ??2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia, AJP: Heart and Circulatory Physiology, vol.291, issue.6, pp.2875-2883, 2006.
DOI : 10.1152/ajpheart.01032.2005

J. Hoerter, G. Barroso, M. Couplan, E. Mateo, P. Gelly et al., Mitochondrial Uncoupling Protein 1 Expressed in the Heart of Transgenic Mice Protects Against Ischemic-Reperfusion Damage, Circulation, vol.110, issue.5, pp.528-533, 2004.
DOI : 10.1161/01.CIR.0000137824.30476.0E

M. Novotova, M. Pavlovicova, V. Veksler, R. Ventura-clapier, and I. Zahradnik, Ultrastructural remodeling of fast skeletal muscle fibers induced by invalidation of creatine kinase, AJP: Cell Physiology, vol.291, issue.6, pp.1279-1285, 2006.
DOI : 10.1152/ajpcell.00114.2006

V. Veksler, A. Kuznetsov, V. Sharov, V. &. Kapelko, and V. Saks, Mitochondrial respiratory parameters in cardiac tissue: A novel method of assessment by using saponin-skinned fibers, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.892, issue.2, pp.191-196, 1987.
DOI : 10.1016/0005-2728(87)90174-5

V. Saks, V. Veksler, A. Kuznetsov, L. Kay, P. Sikk et al., Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo, Mol Cell Biochem, vol.184, pp.81-100, 1998.
DOI : 10.1007/978-1-4615-5653-4_7

URL : https://hal.archives-ouvertes.fr/inserm-00391349

L. Bahi, N. Koulmann, H. Sanchez, I. Momken, V. Veksler et al., Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats?, Journal of Applied Physiology, vol.96, issue.1, pp.59-64, 2004.
DOI : 10.1152/japplphysiol.00323.2003

V. Veksler, A. Kuznetsov, K. Anflous, P. Mateo, J. Van-deursen et al., Muscle Creatine Kinase-deficient Mice: II. CARDIAC AND SKELETAL MUSCLES EXHIBIT TISSUE-SPECIFIC ADAPTATION OF THE MITOCHONDRIAL FUNCTION, Journal of Biological Chemistry, vol.270, issue.34, pp.19921-19929, 1995.
DOI : 10.1074/jbc.270.34.19921

S. Ray, S. Dutta, J. Halder, and M. Ray, Inhibition of electron flow through complex I of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal, Biochemical Journal, vol.303, issue.1, pp.69-72, 1994.
DOI : 10.1042/bj3030069

D. Sousa, E. Veksler, V. Minajeva, A. Kaasik, A. Mateo et al., Subcellular Creatine Kinase Alterations : Implications in Heart Failure, Circulation Research, vol.85, issue.1, pp.68-76, 1999.
DOI : 10.1161/01.RES.85.1.68

A. Garnier, D. Fortin, C. Delomenie, I. Momken, V. Veksler et al., Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles, The Journal of Physiology, vol.94, issue.(suppl. VII), pp.491-501, 2003.
DOI : 10.1113/jphysiol.2003.045104

T. Scholz, S. Koppenhafer, C. Teneyck, and B. Schutte, Developmental Regulation of the ??-Glycerophosphate Shuttle in Porcine Myocardium, Journal of Molecular and Cellular Cardiology, vol.29, issue.6, pp.1605-1613, 1997.
DOI : 10.1006/jmcc.1997.0394

R. Moreno-sanchez and R. Hansford, concentration, Biochemical Journal, vol.256, issue.2, pp.403-412, 1988.
DOI : 10.1042/bj2560403

J. Petit, A. Maftah, M. Ratinaud, and R. Julien, 10N-nonyl acridine orange interacts with HAL author manuscript inserm-00150990

M. Fry and D. Green, Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid, Biochemical and Biophysical Research Communications, vol.93, issue.4, pp.1238-1246, 1980.
DOI : 10.1016/0006-291X(80)90622-1

T. Ohtsuka, M. Nishijima, K. Suzuki, and Y. Akamatsu, Mitochondrial Dysfunction of a Cultured Chinese Hamster Ovary Cell Mutant Deficient in Cardiolipin, J Biol Chem, vol.268, pp.22914-22919, 1993.

J. Cao, Y. Liu, J. Lockwood, P. Burn, and Y. Shi, A Novel Cardiolipin-remodeling Pathway Revealed by a Gene Encoding an Endoplasmic Reticulum-associated Acyl-CoA:Lysocardiolipin Acyltransferase (ALCAT1) in Mouse, Journal of Biological Chemistry, vol.279, issue.30, pp.31727-31761, 2004.
DOI : 10.1074/jbc.M402930200

G. Hatch, Cell biology of cardiac mitochondrial phospholipids, Biochemistry and Cell Biology, vol.82, issue.1, pp.99-112, 2004.
DOI : 10.1139/o03-074

E. Ponsot, J. Zoll, N. Guessan, B. Ribera, F. Lampert et al., Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles, Journal of Cellular Physiology, vol.194, issue.257, pp.479-486, 2005.
DOI : 10.1002/jcp.20245

P. Puigserver, Z. Wu, C. Park, R. Graves, M. Wright et al., A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis, Cell, vol.92, issue.6, pp.829-839, 1998.
DOI : 10.1016/S0092-8674(00)81410-5

H. Zong, J. Ren, L. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.91, issue.4, pp.15983-15987, 2002.
DOI : 10.1073/pnas.91.4.1309

V. Saks, Z. Khuchua, E. Vasilyeva, O. Belikova, and A. Kuznetsov, Metabolic compartmentation and substrate channelling in muscle cells -Role of coupled creatine kinases in in vivo regulation of cellular respiration -A synthesis, Mol Cell Biochem, vol.133, pp.155-192, 1994.
URL : https://hal.archives-ouvertes.fr/inserm-00391377

K. Wicks and D. Hood, Mitochondrial adaptations in denervated muscle: relationship to muscle performance, Am J Physiol, vol.260, pp.841-850, 1991.

M. Schlame, D. Rua, and M. Greenberg, The biosynthesis and functional role of cardiolipin, Progress in Lipid Research, vol.39, issue.3, pp.257-288, 2000.
DOI : 10.1016/S0163-7827(00)00005-9

C. Heron, D. Corina, and C. Ragan, The phospholipid annulus of mitochondrial NADH-ubiquinone reductase A dual phospholipid requirement for enzyme activity, FEBS Letters, vol.255, issue.2, pp.399-403, 1977.
DOI : 10.1016/0014-5793(77)80830-2

H. Schagger, T. Hagen, R. B. Brandt, U. Link, T. Jagow et al., Phospholipid specificity of bovine heart bc1 complex, European Journal of Biochemistry, vol.89, issue.1, pp.123-130, 1990.
DOI : 10.1016/S0076-6879(86)26020-6

M. Muller, R. Moser, and D. Cheneval, Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase, J Biol Chem, vol.260, pp.3829-3843, 1985.